Modelling and Simulation of a Robotic System for Lower Limb Rehabilitation

Author(s):  
Bogdan Gherman ◽  
Iosif Birlescu ◽  
Paul Tucan ◽  
Calin Vaida ◽  
Adrian Pisla ◽  
...  

As the life span increases and the availability of physicians becomes more and more scarce, robotic rehabilitation for post-stroke patients becomes more and more demanding, especially due to the repeatability character of the rehabilitation exercises. Both lower and upper limb rehabilitation using robotic systems have proved to be very successful in different stages of the rehabilitation process, but only a few address the immediate (critical) post-stroke phase, especially when the patient is hemiplegic and is unable to stand. The paper presents the kinematic modelling, singularity analysis and gait simulation for a new 4-DOF parallel robot named RECOVER used for lower limb rehabilitation for bedridden patients. The robotic system has been designed for the mobilization of the lower limb, namely the following motions: the hip and knee flexion and the plantar adduction/abduction and flexion/dorsiflexion. The kinematics has been studied and the singularity configurations have been determined to achieve a failsafe rehabilitation robot. Numerical simulations prove that the system can be used for gait training exercises in safe conditions.

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 277
Author(s):  
Doina Pisla ◽  
Iuliu Nadas ◽  
Paul Tucan ◽  
Stefan Albert ◽  
Giuseppe Carbone ◽  
...  

This paper is focused on the development of a control system, implemented on a parallel robot designed for the lower limb rehabilitation of bedridden stroke survivors. The paper presents the RECOVER robotic system kinematics, further implemented into the control system, which is described in terms of architecture and functionality. Through a battery of experimental tests, achieved in laboratory conditions using eight healthy subjects, the feasibility and functionality of the proposed robotic system have been validated, and the overall performance of the control system has been studied. The range of motion of each targeted joint has been recorded using a commercially available external sensor system. The kinematic parameters, namely the patient’s joints velocities and accelerations have been recorded and compared to the ones obtained using the virtual model, yielding a very small difference between them, which provides a validation of the RECOVER initial design, both in terms of mechanical construction and control system.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440004 ◽  
Author(s):  
SHUAI GUO ◽  
JIANCHENG JI ◽  
GUANGWEI MA ◽  
TAO SONG ◽  
JING WANG

After analyzing the rehabilitation needs of stroke patients and the previous studies on lower limb rehabilitation robot, our lower limb rehabilitation robot is designed for stroke patients' gait and balance training. The robot consists of the mobile chassis, the support column and the pelvis mechanism and it is described in detail. As the pelvis mechanism allows most of the patient's motion degrees of freedom (DOFs), the kinematics model of the mechanism is set up, and kinematics simulation is carried out to study the motion characteristics of the mechanism. After analyzing the calculation and simulation results, the pelvis mechanism is proven to measure up to the movement needs of the paralytic's waist and pelvis in walking rehabilitation process.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Alireza Rastegarpanah ◽  
Mozafar Saadat

The aim of this study is to investigate the performance of a 6-DoF parallel robot in tracking the movement of the foot trajectory of a paretic leg during a single stride. The foot trajectories of nine patients with a paretic leg including both males and females have been measured and analysed by a Vicon system in a gait laboratory. Based on kinematic and dynamic analysis of a 6-DoF UPS parallel robot, an algorithm was developed in MATLAB to calculate the length of the actuators and their required forces during all trajectories. The workspace and singularity points of the robot were then investigated in nine different cases. A 6-DoF UPS parallel robot prototype with high repeatability was designed and built in order to simulate a single stride. Results showed that the robot was capable of tracking all of the trajectories with the maximum position error of 1.2 mm.


Author(s):  
Bogdan Gherman ◽  
Iosif Birlescu ◽  
Ferenc Puskas ◽  
Adrian Pisla ◽  
Giuseppe Carbone ◽  
...  

Author(s):  
Calin Vaida ◽  
Iosif Birlescu ◽  
Adrian Pisla ◽  
Giuseppe Carbone ◽  
Nicolae Plitea ◽  
...  

2015 ◽  
Vol 789-790 ◽  
pp. 665-674 ◽  
Author(s):  
Nakrob Wanichnukhrox ◽  
Thavida Maneewarn ◽  
Szathys Songschon

The design of lower limb rehabilitation robot can be categorized into two approaches: the end-effector and the exoskeleton. Both types of the robots have different advantages and disadvantages. The exoskeleton type is designed to mimic the kinematic structure of the human skeleton by controlling hip and knee joints but the end-effector type is driven at the footplate which allows patients to perform various gait training exercise. In this paper, the end-effector and exoskeleton device are compared based on dynamical analysis using Matlab's Simechanics simulation. The hybrid lower limb rehabilitation robot is also proposed based on the exoskeleton robot with the adjustable mechanical coupling interface between human and robot and the active footplate. The hybrid design combines the advantages of both the exoskeleton and the end-effector by allowing the mechanical coupling parameters and the active footplate controller to be adjustable at different stages of training. The proposed design can improve both joints misalignment and joint trajectory tracking problems in both existing approaches.


Author(s):  
Lee Wei Jian ◽  
Syadiah Nor Wan Shamsuddin

Stroke is one of the leading causes that elicits to disability for adults over a long period. Post-stroke patients often have difficulties with joints and muscles in their legs, which prevents them from moving around. Lower limb rehabilitation helps to regain normal mobility and functionality of patients such as standing, walking and climbing stairs. The implementation of virtual reality in stroke rehabilitation helps to encourage patients on frequent engagement with exercise. This paper briefly presents the ongoing research regarding lower limb rehabilitation systems for post-stroke patient in virtual reality environment to provide an overview of the conceptual design, limitations, and suggestions for future work in this direction.


Sign in / Sign up

Export Citation Format

Share Document