scholarly journals A Ship Rotation Detection Model in Remote Sensing Images Based on Feature Fusion Pyramid Network and Deep Reinforcement Learning

2018 ◽  
Vol 10 (12) ◽  
pp. 1922 ◽  
Author(s):  
Kun Fu ◽  
Yang Li ◽  
Hao Sun ◽  
Xue Yang ◽  
Guangluan Xu ◽  
...  

Ship detection plays an important role in automatic remote sensing image interpretation. The scale difference, large aspect ratio of ship, complex remote sensing image background and ship dense parking scene make the detection task difficult. To handle the challenging problems above, we propose a ship rotation detection model based on a Feature Fusion Pyramid Network and deep reinforcement learning (FFPN-RL) in this paper. The detection network can efficiently generate the inclined rectangular box for ship. First, we propose the Feature Fusion Pyramid Network (FFPN) that strengthens the reuse of different scales features, and FFPN can extract the low level location and high level semantic information that has an important impact on multi-scale ship detection and precise location of dense parking ships. Second, in order to get accurate ship angle information, we apply deep reinforcement learning to the inclined ship detection task for the first time. In addition, we put forward prior policy guidance and a long-term training method to train an angle prediction agent constructed through a dueling structure Q network, which is able to iteratively and accurately obtain the ship angle. In addition, we design soft rotation non-maximum suppression to reduce the missed ship detection while suppressing the redundant detection boxes. We carry out detailed experiments on the remote sensing ship image dataset, and the experiments validate that our FFPN-RL ship detection model has efficient detection performance.

2019 ◽  
Vol 56 (11) ◽  
pp. 111001
Author(s):  
贺琪 Qi He ◽  
李瑶 Yao Li ◽  
宋巍 Wei Song ◽  
黄冬梅 Dongmei Huang ◽  
何盛琪 Shengqi He ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jiaming Xue ◽  
Shun Xiong ◽  
Chaoguang Men ◽  
Zhiming Liu ◽  
Yongmei Liu

Remote-sensing images play a crucial role in a wide range of applications and have been receiving significant attention. In recent years, great efforts have been made in developing various methods for intelligent interpretation of remote-sensing images. Generally speaking, machine learning-based methods of remote-sensing image interpretation require a large number of labeled samples and there are still not enough annotated datasets in the field of remote sensing. However, manual annotation of remote-sensing images is usually labor-intensive and requires expert knowledge and the accuracy of annotation results is relatively low. The goal of this paper is to propose a novel tile-level annotation method of remote-sensing images to obtain remote-sensing datasets which are well-labeled and contain accurate semantic concepts. Firstly, we use a set of images with defined semantic concepts to represent the training set and divide them into several nonoverlapping regions. Secondly, the color features, texture features, and spatial features of each region are extracted, and discriminative features are obtained by the weight optimization feature fusion method. Then, the features are quantized into visual words by applying a density-based clustering center selection method and an isolated feature point elimination method. And the remote-sensing images can be represented by a series of visual words. Finally, the LDA model is used to calculate the probabilities of semantic categories for each region. The experiments are conducted on remote-sensing images which demonstrate that our proposed method can achieve good performance on remote-sensing image tile-level annotation. The implications of our research can obtain annotated datasets with accurate semantic concepts for intelligent interpretation of remote-sensing images.


2020 ◽  
Vol 49 (7) ◽  
pp. 710004
Author(s):  
史文旭 Wen-xu SHI ◽  
江金洪 Jin-hong JIANG ◽  
鲍胜利 Sheng-li BAO

2021 ◽  
Vol 13 (7) ◽  
pp. 1243
Author(s):  
Wenxin Yin ◽  
Wenhui Diao ◽  
Peijin Wang ◽  
Xin Gao ◽  
Ya Li ◽  
...  

The detection of Thermal Power Plants (TPPs) is a meaningful task for remote sensing image interpretation. It is a challenging task, because as facility objects TPPs are composed of various distinctive and irregular components. In this paper, we propose a novel end-to-end detection framework for TPPs based on deep convolutional neural networks. Specifically, based on the RetinaNet one-stage detector, a context attention multi-scale feature extraction network is proposed to fuse global spatial attention to strengthen the ability in representing irregular objects. In addition, we design a part-based attention module to adapt to TPPs containing distinctive components. Experiments show that the proposed method outperforms the state-of-the-art methods and can achieve 68.15% mean average precision.


Author(s):  
Leijin Long ◽  
Feng He ◽  
Hongjiang Liu

AbstractIn order to monitor the high-level landslides frequently occurring in Jinsha River area of Southwest China, and protect the lives and property safety of people in mountainous areas, the data of satellite remote sensing images are combined with various factors inducing landslides and transformed into landslide influence factors, which provides data basis for the establishment of landslide detection model. Then, based on the deep belief networks (DBN) and convolutional neural network (CNN) algorithm, two landslide detection models DBN and convolutional neural-deep belief network (CDN) are established to monitor the high-level landslide in Jinsha River. The influence of the model parameters on the landslide detection results is analyzed, and the accuracy of DBN and CDN models in dealing with actual landslide problems is compared. The results show that when the number of neurons in the DBN is 100, the overall error is the minimum, and when the number of learning layers is 3, the classification error is the minimum. The detection accuracy of DBN and CDN is 97.56% and 97.63%, respectively, which indicates that both DBN and CDN models are feasible in dealing with landslides from remote sensing images. This exploration provides a reference for the study of high-level landslide disasters in Jinsha River.


2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 4673-4687
Author(s):  
Jixiang Zhao ◽  
Shanwei Liu ◽  
Jianhua Wan ◽  
Muhammad Yasir ◽  
Huayu Li

Author(s):  
Rui Yang ◽  
Yu Gu ◽  
Yu Liao ◽  
Huan Zhang ◽  
Yingzhi Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document