scholarly journals Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops using Small UAVs

2019 ◽  
Vol 11 (2) ◽  
pp. 112 ◽  
Author(s):  
Senlin Guan ◽  
Koichiro Fukami ◽  
Hitoshi Matsunaka ◽  
Midori Okami ◽  
Ryo Tanaka ◽  
...  

The aim of this study was to use small unmanned aerial vehicles (UAVs) for determining high-resolution normalized difference vegetation index (NDVI) values. Subsequently, these results were used to assess their correlations with fertilizer application levels and the yields of rice and wheat crops. For multispectral sensing, we flew two types of small UAVs (DJI Phantom 4 and DJI Phantom 4 Pro)—each equipped with a compact multispectral sensor (Parrot Sequoia). The information collected was composed of numerous RGB orthomosaic images as well as reflectance maps with spatial resolution greater than a ground sampling distance of 10.5 cm. From 223 UAV flight campaigns over 120 fields with a total area coverage of 77.48 ha, we determined that the highest efficiency for the UAV-based remote sensing measurement was approximately 19.8 ha per 10 min while flying 100 m above ground level. During image processing, we developed and used a batch image alignment algorithm—a program written in Python language–to calculate the NDVI values in experimental plots or fields in a batch of NDVI index maps. The color NDVI distribution maps of wide rice fields identified differences in stages of ripening and lodging-injury areas, which accorded with practical crop growth status from aboveground observation. For direct-seeded rice, variation in the grain yield was most closely related to that in the NDVI at the early reproductive and late ripening stages. For wheat, the NDVI values were highly correlated with the yield ( R 2 = 0.601–0.809) from the middle reproductive to the early ripening stages. Furthermore, using the NDVI values, it was possible to differentiate the levels of fertilizer application for both rice and wheat. These results indicate that the small UAV-derived NDVI values are effective for predicting yield and detecting fertilizer application levels during rice and wheat production.

2018 ◽  
Vol 10 (9) ◽  
pp. 1478
Author(s):  
Ahmed Harun-Al-Rashid ◽  
Chan-Su Yang

This work focuses on the detection of tiny macroalgae patches in the eastern parts of the Yellow Sea (YS) using high-resolution Landsat-8 images from 2014 to 2017. In the comparison between floating algae index (FAI) and normalized difference vegetation index (NDVI) better detection by FAI was observed, but many tiny patches still remained undetected. By applying a modification on the FAI around 12% to 27% increased and correct detection of macroalgae is achieved from 35 images compared to the original. Through this method many scattered tiny patches were detected in June or July in Korea Bay and Gyeonggi Bay. Though it was a small-scale phenomenon they occurred in the similar period of macroalgal bloom occurrence in the YS. Thus, by using this modified method we could detect macroalgae in the study areas around one month earlier than the previously used Geostationary Ocean Color Imager NDVI-based detection. Later, more macroalgae patches including smaller ones occupying increased areas were detected. Thus, it seems that those macroalgae started growing locally from tiny patches rather than being transported from the western parts of the YS. Therefore, this modified FAI could be used for the precise detection of macroalgae.


2019 ◽  
Vol 19 (6) ◽  
pp. 1189-1213 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the normalized difference vegetation index (NDVI) for the whole of Spain spanning the period from 1981 to 2015, combined with a dataset of the standardized precipitation evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. Specifically, this study explores the drought timescales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that – over large areas of Spain – vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the timescale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.


2020 ◽  
Vol 12 (12) ◽  
pp. 1975
Author(s):  
Alexandru Hegyi ◽  
Apostolos Sarris ◽  
Florin Curta ◽  
Cristian Floca ◽  
Sorin Forțiu ◽  
...  

This study presents a new way to reconstruct the extent of medieval archaeological sites by using approaches from the field of geoinformatics. Hence, we propose a combined use of non-invasive methodologies which are used for the first time to study a medieval village in Romania. The focus here will be on ground-based and satellite remote-sensing techniques. The method relies on computing vegetation indices (proxies), which have been utilized for archaeological site detection in order to detect the layout of a deserted medieval town located in southwestern Romania. The data were produced by a group of small satellites (3U CubeSats) dispatched by Planet Labs which delivered high-resolution images of the Earth’s surface. The globe is encompassed by more than 150 satellites (dimensions: 10 × 10 × 30 cm) which catch different images for the same area at moderately short intervals at a spatial resolution of 3–4 m. The four-band Planet Scope satellite images were employed to calculate a number of vegetation indices such as NDVI (Normalized Difference Vegetation Index), DVI (Difference Vegetation Index), SR (Simple Vegetation Ratio) and others. For better precision, structure from motion (SfM) techniques were applied to generate a high-resolution orthomosaic and a digital surface model in which the boundaries of the medieval village of “Șanțul Turcilor” in Mașloc, Romania, can be plainly observed. Additionally, this study contrasts the outcomes with a geophysical survey that was attempted inside the central part of the medieval settlement. The technical results of this study also provide strong evidence from an historical point of view: the first documented case of village systematization during the medieval period within Eastern Europe (particularly Romania) found through geoscientific methods.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4834 ◽  
Author(s):  
Pengyu Hao ◽  
Mingquan Wu ◽  
Zheng Niu ◽  
Li Wang ◽  
Yulin Zhan

Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.


2020 ◽  
Vol 13 (1) ◽  
pp. 165
Author(s):  
Hillary M. O. Otieno ◽  
George N. Chemining’wa ◽  
Shamie Zingore

To mitigate low maize productivity, improve on-farm planning and policy implementation, the right fertilizer combinations and yield forecasting should be prioritized. Therefore, this research aimed at assessing the effect of applying different nutrient combinations on maize growth and yield and in-season grain yield prediction from biomass and normalized difference vegetation index (NDVI) readings. The research was done in Embu and Kirinyaga counties, in Central Kenya. Nutrient combinations tested were P+K, N+K, N+P, N+P+K, and N+P+K+Ca+Mg+Zn+B+S. The results showed consistently lowest and highest NDVI reading, dry biomass, and grain yields due to P+K and N+P+K+Ca+Mg+Zn+B+S treatments, respectively. Positive NDVI responses of 56%, 14%, 15%, and 15% were recorded with N, P, K, and combined Ca+Mg+Zn+B+S, respectively. These nutrients, in the same order, recorded 54%, 20%, 8%, and 18% positive responses with biomass. The GreenSeeker NDVI reading with grain yield and aboveground dry biomass with grain yield recorded R2 ranging from 0.23-0.53 and 0.30-0.61 (in Embu), and 0.31-0.64 and 0.30-0.50 (in Kirinyaga), respectively. When data were pooled, the prediction strength increased, reaching a maximum of 67% and 58% with NDVI and biomass, respectively. Yield prediction was even more robust when the independent variables were combined through multiple linear model at both 85 and 105 days after emergence. From this research, it is evident that the effects of balanced fertilizer application are detectable from NDVI readings—providing a tool for tracking and monitoring nutrient management effects—not just from the nitrogen perspective as commonly studied but from the combined effects of multiple nutrients. Also, grain yield could be accurately predicted early before harvesting by combining NDVI and biomass yields.


Author(s):  
H. Hashim ◽  
Z. Abd Latif ◽  
N. A. Adnan

Abstract. Recently the sensing data for urban mapping used is in high demand together with the accessible of very high resolution (VHR) satellite data such as Worldview and Pleiades. This article presents the use of very high resolution (VHR) remote sensing data for urban vegetation mapping. The research objectives were to assess the use of Pleiades imagery to extricate the data of urban vegetation in urban area of Kuala Lumpur. Normalized Difference Vegetation Index (NDVI) were employs with VHR data to find Vegetation Index for classification process of vegetation and non-vegetation classes. Land use classes are easily determined by computing their Normalized Difference Vegetation Index for Land use land cover classification. Maximum likelihood was conducted for the classification phase. NDVI were extracted from the imagery to assist the process of classification. NDVI method is use by referring to its features such as vegetation at different NDVI threshold values. The result showed three classes of land cover that consist of low vegetation, high vegetation and non-vegetation area. The accuracy assessment gained was then being implemented using the visual interpretation and overall accuracy achieved was 70.740% with kappa coefficient of 0.5. This study gained the proposed threshold method using NDVI value able to identify and classify urban vegetation with the use of VHR Pleiades imagery and need further improvement when apply to different area of interest and different land use land cover characteristics. The information achieved from the result able to help planners for future planning for conservation of vegetation in urban area.


Sign in / Sign up

Export Citation Format

Share Document