scholarly journals An Unmixing-Based Bayesian Model for Spatio-Temporal Satellite Image Fusion in Heterogeneous Landscapes

2019 ◽  
Vol 11 (3) ◽  
pp. 324 ◽  
Author(s):  
Jie Xue ◽  
Yee Leung ◽  
Tung Fung

Studies of land surface dynamics in heterogeneous landscapes often require satellite images with a high resolution, both in time and space. However, the design of satellite sensors often inherently limits the availability of such images. Images with high spatial resolution tend to have relatively low temporal resolution, and vice versa. Therefore, fusion of the two types of images provides a useful way to generate data high in both spatial and temporal resolutions. A Bayesian data fusion framework can produce the target high-resolution image based on a rigorous statistical foundation. However, existing Bayesian data fusion algorithms, such as STBDF (spatio-temporal Bayesian data fusion) -I and -II, do not fully incorporate the mixed information contained in low-spatial-resolution pixels, which in turn might limit their fusion ability in heterogeneous landscapes. To enhance the capability of existing STBDF models in handling heterogeneous areas, this study proposes two improved Bayesian data fusion approaches, coined ISTBDF-I and ISTBDF-II, which incorporate an unmixing-based algorithm into the existing STBDF framework. The performance of the proposed algorithms is visually and quantitatively compared with STBDF-II using simulated data and real satellite images. Experimental results show that the proposed algorithms generate improved spatio-temporal-resolution images over STBDF-II, especially in heterogeneous areas. They shed light on the way to further enhance our fusion capability.

2020 ◽  
Vol 12 (23) ◽  
pp. 3900
Author(s):  
Bingxin Bai ◽  
Yumin Tan ◽  
Gennadii Donchyts ◽  
Arjen Haag ◽  
Albrecht Weerts

High spatio–temporal resolution remote sensing images are of great significance in the dynamic monitoring of the Earth’s surface. However, due to cloud contamination and the hardware limitations of sensors, it is difficult to obtain image sequences with both high spatial and temporal resolution. Combining coarse resolution images, such as the moderate resolution imaging spectroradiometer (MODIS), with fine spatial resolution images, such as Landsat or Sentinel-2, has become a popular means to solve this problem. In this paper, we propose a simple and efficient enhanced linear regression spatio–temporal fusion method (ELRFM), which uses fine spatial resolution images acquired at two reference dates to establish a linear regression model for each pixel and each band between the image reflectance and the acquisition date. The obtained regression coefficients are used to help allocate the residual error between the real coarse resolution image and the simulated coarse resolution image upscaled by the high spatial resolution result of the linear prediction. The developed method consists of four steps: (1) linear regression (LR), (2) residual calculation, (3) distribution of the residual and (4) singular value correction. The proposed method was tested in different areas and using different sensors. The results show that, compared to the spatial and temporal adaptive reflectance fusion model (STARFM) and the flexible spatio–temporal data fusion (FSDAF) method, the ELRFM performs better in capturing small feature changes at the fine image scale and has high prediction accuracy. For example, in the red band, the proposed method has the lowest root mean square error (RMSE) (ELRFM: 0.0123 vs. STARFM: 0.0217 vs. FSDAF: 0.0224 vs. LR: 0.0221). Furthermore, the lightweight algorithm design and calculations based on the Google Earth Engine make the proposed method computationally less expensive than the STARFM and FSDAF.


Sci ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 10
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

Αbstract: To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 80s decade (1980–1990) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


2020 ◽  
Author(s):  
Maite Lezama Valdes ◽  
Marwan Katurji ◽  
Hanna Meyer

<p>Anthropogenic Climate Change is expected to take a toll on the Antarctic environment and its biodiversity, which is concentrated on the continent’s few ice-free areas, such as the McMurdo Dry Valleys (MDV). To model the current terrestrial habitat distribution and predict possible climate induced changes, high spatial and temporal resolution abiotic variables, especially land surface temperature (LST) and soil moisture are needed, but are currently unavailable.</p><p>The aim of this project is to fill this gap and create a high resolution LST dataset of the Antarctic Dry Valleys. This variable is acquired in a high temporal resolution (sub-daily) by the MODIS sensor aboard Terra and Aqua satellites. However, as LST varies greatly in space, the spatial resolution provided by this data source (1000 m) is too low to give a meaningful impression of LST and to study biodiversity patterns. Therefore, we use data from Landsat and ASTER sensors as a reference to downscale MODIS LST to a spatial resolution of 30 m. 7 year’s worth of satellite data as well as terrain-derived auxiliary variables went into the development of the model, which predicts 30 m LST for the Antarctic Dry Valleys. </p><p>To model complex relations between terrain, radiation, land cover and LST, machine learning models are used. Multiple algorithms (Random Forest, NN, SVM, Gradient Boosting) are compared to find the best approach for predicting high resolution LST based on MODIS data. Using the best performing model, a daily dataset is created that provides LST for the Antarctic Dry Valleys from 2002 on.</p>


2019 ◽  
Vol 11 (7) ◽  
pp. 761 ◽  
Author(s):  
Tong Wang ◽  
Ronglin Tang ◽  
Zhao-Liang Li ◽  
Yazhen Jiang ◽  
Meng Liu ◽  
...  

Continuous high spatio-temporal resolution monitoring of evapotranspiration (ET) is critical for water resource management and the quantification of irrigation water efficiency at both global and local scales. However, available remote sensing satellites cannot generally provide ET data at both high spatial and temporal resolutions. Data fusion methods have been widely applied to estimate ET at a high spatio-temporal resolution. Nevertheless, most fusion methods applied to ET are initially used to integrate land surface reflectance, the spectral index and land surface temperature, and few studies completely consider the influencing factor of ET. To overcome this limitation, this paper presents an improved ET fusion method, namely, the spatio-temporal adaptive data fusion algorithm for evapotranspiration mapping (SADFAET), by introducing critical surface temperature (the corresponding temperature to decide soil moisture), importing the weights of surface ET-indicative similarity (the influencing factor of ET, which is estimated from remote sensing data) and modifying the spectral similarity (the differences in spectral characteristics of different spatial resolution images) for the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). We fused daily Moderate Resolution Imaging Spectroradiometer (MODIS) and periodic Landsat 8 ET data in the SADFAET for the experimental area downstream of the Heihe River basin from April to October 2015. The validation results, based on ground-based ET measurements, indicated that the SADFAET could successfully fuse MODIS and Landsat 8 ET data (mean percent error: −5%), with a root mean square error of 45.7 W/m2, whereas the ESTARFM performed slightly worse, with a root mean square error of 50.6 W/m2. The more physically explainable SADFAET could be a better alternative to the ESTARFM for producing ET at a high spatio-temporal resolution.


2021 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Giovanni Paolini ◽  
Maria Jose Escorihuela ◽  
Joaquim Bellvert ◽  
Olivier Merlin

This paper introduces a modified version of the DisPATCh (Disaggregation based on Physical And Theoretical scale Change) algorithm to disaggregate an SMAP surface soil moisture (SSM) product at a 20 m spatial resolution, through the use of sharpened Sentinel-3 land surface temperature (LST) data. Using sharpened LST as a high resolution proxy of SSM is a novel approach that needs to be validated and can be employed in a variety of applications that currently lack in a product with a similar high spatio-temporal resolution. The proposed high resolution SSM product was validated against available in situ data for two different fields, and it was also compared with two coarser DisPATCh products produced, disaggregating SMAP through the use of an LST at 1 km from Sentinel-3 and MODIS. From the correlation between in situ data and disaggregated SSM products, a general improvement was found in terms of Pearson’s correlation coefficient (R) for the proposed high resolution product with respect to the two products at 1 km. For the first field analyzed, R was equal to 0.47 when considering the 20 m product, an improvement compared to the 0.28 and 0.39 for the 1 km products. The improvement was especially noticeable during the summer season, in which it was only possible to successfully capture field-specific irrigation practices at the 20 m resolution. For the second field, R was 0.31 for the 20 m product, also an improvement compared to the 0.21 and 0.23 for the 1 km product. Additionally, the new product was able to depict SSM spatial variability at a sub-field scale and a validation analysis is also proposed at this scale. The main advantage of the proposed product is its very high spatio-temporal resolution, which opens up new opportunities to apply remotely sensed SSM data in disciplines that require fine spatial scales, such as agriculture and water management.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4337
Author(s):  
Guohui Zhao ◽  
Yaonan Zhang ◽  
Junlei Tan ◽  
Cong Li ◽  
Yanrun Ren

Land surface temperature (LST) is a critical state variable of land surface energy equilibrium and a key indicator of environmental change such as climate change, urban heat island, and freezing-thawing hazard. The high spatial and temporal resolution datasets are urgently needed for a variety of environmental change studies, especially in remote areas with few LST observation stations. MODIS and Landsat satellites have complementary characteristics in terms of spatial and temporal resolution for LST retrieval. To make full use of their respective advantages, this paper developed a pixel-based multi-spatial resolution adaptive fusion modeling framework (called pMSRAFM). As an instance of this framework, the data fusion model for joint retrieval of LST from Landsat-8 and MODIS data was implemented to generate the synthetic LST with Landsat-like spatial resolution and MODIS temporal information. The performance of pMSRAFM was tested and validated in the Heihe River Basin located in China. The results of six experiments showed that the fused LST was high similarity to the direct Landsat-derived LST with structural similarity index (SSIM) of 0.83 and the index of agreement (d) of 0.84. The range of SSIM was 0.65–0.88, the root mean square error (RMSE) yielded a range of 1.6–3.4 °C, and the averaged bias was 0.6 °C. Furthermore, the temporal information of MODIS LST was retained and optimized in the synthetic LST. The RMSE ranged from 0.7 °C to 1.5 °C with an average value of 1.1 °C. When compared with in situ LST observations, the mean absolute error and bias were reduced after fusion with the mean absolute bias of 1.3 °C. The validation results that fused LST possesses the spatial pattern of Landsat-derived LSTs and inherits most of the temporal properties of MODIS LSTs at the same time, so it can provide more accurate and credible information. Consequently, pMSRAFM can be served as a promising and practical fusion framework to prepare a high-quality LST spatiotemporal dataset for various applications in environment studies.


Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 36
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 2nd half of the 20th century (1950–1999) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


2019 ◽  
Vol 11 (12) ◽  
pp. 1422 ◽  
Author(s):  
Wei Li ◽  
Jiale Jiang ◽  
Tai Guo ◽  
Meng Zhou ◽  
Yining Tang ◽  
...  

High-resolution satellite images can be used to some extent to mitigate the mixed-pixel problem caused by the lack of intensive production, farmland fragmentation, and the uneven growth of field crops in developing countries. Specifically, red-edge (RE) satellite images can be used in this context to reduce the influence of soil background at early stages as well as saturation due to crop leaf area index (LAI) at later stages. However, the availability of high-resolution RE satellite image products for research and application globally remains limited. This study uses the weight-and-unmixing algorithm as well as the SUPer-REsolution for multi-spectral Multi-resolution Estimation (Wu-SupReME) approach to combine the advantages of Sentinel-2 spectral and Planet spatial resolution and generate a high-resolution RE product. The resultant fused image is highly correlated (R2 > 0.98) with Sentinel-2 image and clearly illustrates the persistent advantages of such products. This fused image was significantly more accurate than the originals when used to predict heterogeneous wheat LAI and therefore clearly illustrated the persistence of Sentinel-2 spectral and Planet spatial advantage, which indirectly proved that the fusion methodology of generating high-resolution red-edge products from Planet and Sentinel-2 images is possible. This study provided method reference for multi-source data fusion and image product for accurate parameter inversion in quantitative remote sensing of vegetation.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 29
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 80s decade (1980–1990) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


2021 ◽  
Vol 13 (22) ◽  
pp. 4673
Author(s):  
Lilian-Maite Lezama Valdes ◽  
Marwan Katurji ◽  
Hanna Meyer

To monitor environmental and biological processes, Land Surface Temperature (LST) is a central variable, which is highly variable in space and time. This particularly applies to the Antarctic Dry Valleys, which host an ecosystem highly adapted to the extreme conditions in this cold desert. To predict possible climate induced changes on the Dry Valley ecosystem, high spatial and temporal resolution environmental variables are needed. Thus we enhanced the spatial resolution of the MODIS satellite LST product that is sensed sub-daily at a 1 km spatial resolution to a 30 m spatial resolution. We employed machine learning models that are trained using Landsat 8 thermal infrared data from 2013 to 2019 as a reference to predict LST at 30 m resolution. For the downscaling procedure, terrain derived variables and information on the soil type as well as the solar insolation were used as potential predictors in addition to MODIS LST. The trained model can be applied to all available MODIS scenes from 1999 onward to develop a 30 m resolution LST product of the Antarctic Dry Valleys. A spatio-temporal validation revealed an R2 of 0.78 and a RMSE of 3.32 ∘C. The downscaled LST will provide a valuable surface climate data set for various research applications, such as species distribution modeling, climate model evaluation, and the basis for the development of further relevant environmental information such as the surface moisture distribution.


Sign in / Sign up

Export Citation Format

Share Document