scholarly journals An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping

2019 ◽  
Vol 11 (7) ◽  
pp. 761 ◽  
Author(s):  
Tong Wang ◽  
Ronglin Tang ◽  
Zhao-Liang Li ◽  
Yazhen Jiang ◽  
Meng Liu ◽  
...  

Continuous high spatio-temporal resolution monitoring of evapotranspiration (ET) is critical for water resource management and the quantification of irrigation water efficiency at both global and local scales. However, available remote sensing satellites cannot generally provide ET data at both high spatial and temporal resolutions. Data fusion methods have been widely applied to estimate ET at a high spatio-temporal resolution. Nevertheless, most fusion methods applied to ET are initially used to integrate land surface reflectance, the spectral index and land surface temperature, and few studies completely consider the influencing factor of ET. To overcome this limitation, this paper presents an improved ET fusion method, namely, the spatio-temporal adaptive data fusion algorithm for evapotranspiration mapping (SADFAET), by introducing critical surface temperature (the corresponding temperature to decide soil moisture), importing the weights of surface ET-indicative similarity (the influencing factor of ET, which is estimated from remote sensing data) and modifying the spectral similarity (the differences in spectral characteristics of different spatial resolution images) for the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). We fused daily Moderate Resolution Imaging Spectroradiometer (MODIS) and periodic Landsat 8 ET data in the SADFAET for the experimental area downstream of the Heihe River basin from April to October 2015. The validation results, based on ground-based ET measurements, indicated that the SADFAET could successfully fuse MODIS and Landsat 8 ET data (mean percent error: −5%), with a root mean square error of 45.7 W/m2, whereas the ESTARFM performed slightly worse, with a root mean square error of 50.6 W/m2. The more physically explainable SADFAET could be a better alternative to the ESTARFM for producing ET at a high spatio-temporal resolution.

2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Yaokui Cui ◽  
Xi Chen ◽  
Wentao Xiong ◽  
Lian He ◽  
Feng Lv ◽  
...  

Surface soil moisture (SM) plays an essential role in the water and energy balance between the land surface and the atmosphere. Low spatio-temporal resolution, about 25–40 km and 2–3 days, of the commonly used global microwave SM products limits their application at regional scales. In this study, we developed an algorithm to improve the SM spatio-temporal resolution using multi-source remote sensing data and a machine-learning model named the General Regression Neural Network (GRNN). First, six high spatial resolution input variables, including Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), albedo, Digital Elevation Model (DEM), Longitude (Lon) and Latitude (Lat), were selected and gap-filled to obtain high spatio-temporal resolution inputs. Then, the GRNN was trained at a low spatio-temporal resolution to obtain the relationship between SM and input variables. Finally, the trained GRNN was driven by the high spatio-temporal resolution input variables to obtain high spatio-temporal resolution SM. We used the Fengyun-3B (FY-3B) SM over the Tibetan Plateau (TP) to test the algorithm. The results show that the algorithm could successfully improve the spatio-temporal resolution of FY-3B SM from 0.25° and 2–3 days to 0.05° and 1-day over the TP. The improved SM is consistent with the original product in terms of both spatial distribution and temporal variation. The high spatio-temporal resolution SM allows a better understanding of the diurnal and seasonal variations of SM at the regional scale, consequently enhancing ecological and hydrological applications, especially under climate change.


2019 ◽  
Vol 11 (3) ◽  
pp. 324 ◽  
Author(s):  
Jie Xue ◽  
Yee Leung ◽  
Tung Fung

Studies of land surface dynamics in heterogeneous landscapes often require satellite images with a high resolution, both in time and space. However, the design of satellite sensors often inherently limits the availability of such images. Images with high spatial resolution tend to have relatively low temporal resolution, and vice versa. Therefore, fusion of the two types of images provides a useful way to generate data high in both spatial and temporal resolutions. A Bayesian data fusion framework can produce the target high-resolution image based on a rigorous statistical foundation. However, existing Bayesian data fusion algorithms, such as STBDF (spatio-temporal Bayesian data fusion) -I and -II, do not fully incorporate the mixed information contained in low-spatial-resolution pixels, which in turn might limit their fusion ability in heterogeneous landscapes. To enhance the capability of existing STBDF models in handling heterogeneous areas, this study proposes two improved Bayesian data fusion approaches, coined ISTBDF-I and ISTBDF-II, which incorporate an unmixing-based algorithm into the existing STBDF framework. The performance of the proposed algorithms is visually and quantitatively compared with STBDF-II using simulated data and real satellite images. Experimental results show that the proposed algorithms generate improved spatio-temporal-resolution images over STBDF-II, especially in heterogeneous areas. They shed light on the way to further enhance our fusion capability.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4337
Author(s):  
Guohui Zhao ◽  
Yaonan Zhang ◽  
Junlei Tan ◽  
Cong Li ◽  
Yanrun Ren

Land surface temperature (LST) is a critical state variable of land surface energy equilibrium and a key indicator of environmental change such as climate change, urban heat island, and freezing-thawing hazard. The high spatial and temporal resolution datasets are urgently needed for a variety of environmental change studies, especially in remote areas with few LST observation stations. MODIS and Landsat satellites have complementary characteristics in terms of spatial and temporal resolution for LST retrieval. To make full use of their respective advantages, this paper developed a pixel-based multi-spatial resolution adaptive fusion modeling framework (called pMSRAFM). As an instance of this framework, the data fusion model for joint retrieval of LST from Landsat-8 and MODIS data was implemented to generate the synthetic LST with Landsat-like spatial resolution and MODIS temporal information. The performance of pMSRAFM was tested and validated in the Heihe River Basin located in China. The results of six experiments showed that the fused LST was high similarity to the direct Landsat-derived LST with structural similarity index (SSIM) of 0.83 and the index of agreement (d) of 0.84. The range of SSIM was 0.65–0.88, the root mean square error (RMSE) yielded a range of 1.6–3.4 °C, and the averaged bias was 0.6 °C. Furthermore, the temporal information of MODIS LST was retained and optimized in the synthetic LST. The RMSE ranged from 0.7 °C to 1.5 °C with an average value of 1.1 °C. When compared with in situ LST observations, the mean absolute error and bias were reduced after fusion with the mean absolute bias of 1.3 °C. The validation results that fused LST possesses the spatial pattern of Landsat-derived LSTs and inherits most of the temporal properties of MODIS LSTs at the same time, so it can provide more accurate and credible information. Consequently, pMSRAFM can be served as a promising and practical fusion framework to prepare a high-quality LST spatiotemporal dataset for various applications in environment studies.


2019 ◽  
Vol 11 (2) ◽  
pp. 133 ◽  
Author(s):  
Meng Zhang ◽  
Hui Lin ◽  
Hua Sun ◽  
Yaotong Cai

Estimating the net primary production (NPP) of vegetation is essential for eco-environment conservation and carbon cycle research. Remote sensing techniques, combined with algorithm models, have been proven to be promising methods for NPP estimation. High-precision and real-time NPP monitoring in heterogeneous areas requires high spatio-temporal resolution remote sensing data, which are not easy to acquire by single remote sensors, especially in cloudy weather. This study proposes to fuse images of different sensors to provide high spatio-temporal resolution data for NPP estimation in cloud-prone areas. Firstly, the time series Normalized Difference Vegetation Index (NDVI) with a spatial resolution of 30 m and a temporal resolution of 16 days, are obtained by the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). Then, the time series NDVI data, combined with meteorological data are input into an improved Carnegie–Ames–Stanford Approach (CASA) model for NPP estimation. This method is validated by a case study of a heavily urbanized area, in the middle reaches of the Yangtze River in China. The results indicate that the NPP estimated by the fused NDVI data has more detailed spatial information than by using the MODIS data. The results show a strong correlation between the actual Landsat8 NDVI and the fused NDVI images, which means that the accuracy of synthetic NDVI images (a 16 day interval and a 30 m resolution) is reliable, and it can provide superior inputs for accurate estimations of a NPP time series. The correlation coefficient (R) and root mean square error between the NPP, based on the fused NDVI and the measured NPP, are 0.66 and 14.280 g C/(m2·yr), respectively, indicating a good consistency. The small discrepancy is caused by the uncertainties of fused NDVI, measurement errors, conversion errors, and other factors in the CASA model. In this study, we achieved NPP with high spatial and temporal resolutions, which can provide higher accuracies of NPP data for analyzing the carbon cycling heavily urbanized areas, compared with similar studies using mono-temporal NPP data. The spatio-temporal fusion technique is an effective way of generating high spatio-temporal resolution images from different sensors, thereby providing enough data for NPP monitoring in urbanized areas.


2021 ◽  
Author(s):  
Flavien Beaud ◽  
Saif Aati ◽  
Ian Delaney ◽  
Surendra Adhikari ◽  
Jean-Philippe Avouac

Abstract. Understanding fast ice flow is key to assess the future of glaciers. Fast ice flow is controlled by sliding at the bed, yet that sliding is poorly understood. A growing number of studies show that the relationship between sliding and basal shear stress transitions from an initially rate-strengthening behavior to a rate-independent or rate-weakening behavior. Studies that have tested a glacier sliding law with data remain rare. Surging glaciers, as we show in this study, can be used as a natural laboratory to inform sliding laws because a single glacier shows extreme velocity variations at a sub-annual timescale. The present study has two parts: (1) we introduce a new workflow to produce velocity maps with a high spatio-temporal resolution from remote sensing data combining Sentinel-2 and Landsat 8 and use the results to describe the recent surge of Shisper glacier, and (2) we present a generalized sliding law and provide a first-order assessment of the sliding-law parameters using the remote sensing dataset. The quality and spatio-temporal resolution of the velocity timeseries allow us to identify a gradual amplification of spring speed-up velocities in the two years leading up to the surge that started by the end of 2017. We also find that surface velocity patterns during the surge can be decomposed in three main phases, and each phase appears to be associated with hydraulic changes. Using this dataset, we are able to constrain the sliding law parameter range necessary to encompass the sliding behavior of Shisper glacier, before and during the surge. We document a transition from rate-strengthening to rate-independent or rate-weakening behavior. A range of parameters is probably necessary to describe sliding at a single glacier. The approach used in this study could be applied to many other sites in order to better constrain glacier sliding in various climatic and geographic settings.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


2021 ◽  
Vol 13 (14) ◽  
pp. 2730
Author(s):  
Animesh Chandra Das ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Drought is one of the detrimental climatic factors that affects the productivity and quality of tea by limiting the growth and development of the plants. The aim of this research was to determine drought stress in tea estates using a remote sensing technique with the standardized precipitation index (SPI). Landsat 8 OLI/TIRS images were processed to measure the land surface temperature (LST) and soil moisture index (SMI). Maps for the normalized difference moisture index (NDMI), normalized difference vegetation index (NDVI), and leaf area index (LAI), as well as yield maps, were developed from Sentinel-2 satellite images. The drought frequency was calculated from the classification of droughts utilizing the SPI. The results of this study show that the drought frequency for the Sylhet station was 38.46% for near-normal, 35.90% for normal, and 25.64% for moderately dry months. In contrast, the Sreemangal station demonstrated frequencies of 28.21%, 41.02%, and 30.77% for near-normal, normal, and moderately dry months, respectively. The correlation coefficients between the SMI and NDMI were 0.84, 0.77, and 0.79 for the drought periods of 2018–2019, 2019–2020 and 2020–2021, respectively, indicating a strong relationship between soil and plant canopy moisture. The results of yield prediction with respect to drought stress in tea estates demonstrate that 61%, 60%, and 60% of estates in the study area had lower yields than the actual yield during the drought period, which accounted for 7.72%, 11.92%, and 12.52% yield losses in 2018, 2019, and 2020, respectively. This research suggests that satellite remote sensing with the SPI could be a valuable tool for land use planners, policy makers, and scientists to measure drought stress in tea estates.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Sang-Jin Park ◽  
Seung-Gyu Jeong ◽  
Yong Park ◽  
Sang-hyuk Kim ◽  
Dong-kun Lee ◽  
...  

Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring of forest phenological responses to climate change is critical for predicting and managing threats to alpine populations. Remote sensing can be used to monitor forest communities in dynamic landscapes for responses to climate change at the species level. Spatiotemporal fusion technology using remote sensing images is an effective way of detecting gradual phenological changes over time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study aims to identify forest phenological characteristics and changes at the species–community level by fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI) value increased with time, which suggests that increasing temperature due to climate change has affected the start of the growth season in the study region. From this study, we found that increasing temperature affects the phenology of these regions, and forest management strategies like monitoring phenology using remote sensing technique should evaluate the effects of climate change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Camila Lorenz ◽  
Marcia C. Castro ◽  
Patricia M. P. Trindade ◽  
Maurício L. Nogueira ◽  
Mariana de Oliveira Lage ◽  
...  

AbstractIdentifying Aedes aegypti breeding hotspots in urban areas is crucial for the design of effective vector control strategies. Remote sensing techniques offer valuable tools for mapping habitat suitability. In this study, we evaluated the association between urban landscape, thermal features, and mosquito infestations. Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a neighborhood of São José do Rio Preto, São Paulo, Brazil, in which the numbers of adult female Ae. aegypti were recorded monthly and grouped by season for three years. We used data from 2016 to 2018 to build the model and data from summer of 2019 to validate it. WorldView-3 satellite images were used to extract land cover classes, and land surface temperature data were obtained using the Landsat-8 Thermal Infrared Sensor (TIRS). A multilevel negative binomial model was fitted to the data, which showed that the winter season has the greatest influence on decreases in mosquito abundance. Green areas and pavements were negatively associated, and a higher cover of asbestos roofs and exposed soil was positively associated with the presence of adult females. These features are related to socio-economic factors but also provide favorable breeding conditions for mosquitos. The application of remote sensing technologies has significant potential for optimizing vector control strategies, future mosquito suppression, and outbreak prediction.


Sign in / Sign up

Export Citation Format

Share Document