scholarly journals Editorial for Special Issue “Remote Sensing of Precipitation”

2019 ◽  
Vol 11 (4) ◽  
pp. 389 ◽  
Author(s):  
Silas Michaelides

This Special Issue hosts papers on all aspects of remote sensing of precipitation, including applications that embrace the use of remote-sensing techniques of precipitation in tackling issues, such as precipitation estimations and retrievals, along with their methodologies and corresponding error assessment; precipitation modelling including validation, instrument comparison, and calibration; understanding of cloud and precipitation microphysical properties; precipitation downscaling; precipitation droplet size distribution; assimilation of remotely sensed precipitation into numerical weather prediction models; and measurement of precipitable water vapor.

Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.


2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Harel. B. Muskatel ◽  
Ulrich Blahak ◽  
Pavel Khain ◽  
Yoav Levi ◽  
Qiang Fu

Parametrization of radiation transfer through clouds is an important factor in the ability of Numerical Weather Prediction models to correctly describe the weather evolution. Here we present a practical parameterization of both liquid droplets and ice optical properties in the longwave and shortwave radiation. An advanced spectral averaging method is used to calculate the extinction coefficient, single scattering albedo, forward scattered fraction and asymmetry factor (bext, v, f, g), taking into account the nonlinear effects of light attenuation in the spectral averaging. An ensemble of particle size distributions was used for the ice optical properties calculations, which enables the effective size range to be extended up to 570 μm and thus be applicable for larger hydrometeor categories such as snow, graupel, and rain. The new parameterization was applied both in the COSMO limited-area model and in ICON global model and was evaluated by using the COSMO model to simulate stratiform ice and water clouds. Numerical weather prediction models usually determine the asymmetry factor as a function of effective size. For the first time in an operational numerical weather prediction (NWP) model, the asymmetry factor is parametrized as a function of aspect ratio. The method is generalized and is available on-line to be readily applied to any optical properties dataset and spectral intervals of a wide range of radiation transfer models and applications.


2005 ◽  
Vol 32 (14-15) ◽  
pp. 1841-1863 ◽  
Author(s):  
Mark S. Roulston ◽  
Jerome Ellepola ◽  
Jost von Hardenberg ◽  
Leonard A. Smith

2012 ◽  
Vol 140 (3) ◽  
pp. 956-977 ◽  
Author(s):  
Nelson L. Seaman ◽  
Brian J. Gaudet ◽  
David R. Stauffer ◽  
Larry Mahrt ◽  
Scott J. Richardson ◽  
...  

Abstract Numerical weather prediction models often perform poorly for weakly forced, highly variable winds in nocturnal stable boundary layers (SBLs). When used as input to air-quality and dispersion models, these wind errors can lead to large errors in subsequent plume forecasts. Finer grid resolution and improved model numerics and physics can help reduce these errors. The Advanced Research Weather Research and Forecasting model (ARW-WRF) has higher-order numerics that may improve predictions of finescale winds (scales <~20 km) in nocturnal SBLs. However, better understanding of the physics controlling SBL flow is needed to take optimal advantage of advanced modeling capabilities. To facilitate ARW-WRF evaluations, a small network of instrumented towers was deployed in the ridge-and-valley topography of central Pennsylvania (PA). Time series of local observations and model forecasts on 1.333- and 0.444-km grids were filtered to isolate deterministic lower-frequency wind components. The time-filtered SBL winds have substantially reduced root-mean-square errors and biases, compared to raw data. Subkilometer horizontal and very fine vertical resolutions are found to be important for reducing model speed and direction errors. Nonturbulent fluctuations in unfiltered, very finescale winds, parts of which may be resolvable by ARW-WRF, are shown to generate horizontal meandering in stable weakly forced conditions. These submesoscale motions include gravity waves, primarily horizontal 2D motions, and other complex signatures. Vertical structure and low-level biases of SBL variables are shown to be sensitive to parameter settings defining minimum “background” mixing in very stable conditions in two representative turbulence schemes.


Sign in / Sign up

Export Citation Format

Share Document