scholarly journals Monitoring Cliff Erosion with LiDAR Surveys and Bayesian Network-based Data Analysis

2019 ◽  
Vol 11 (7) ◽  
pp. 843 ◽  
Author(s):  
Paweł Terefenko ◽  
Dominik Paprotny ◽  
Andrzej Giza ◽  
Oswaldo Morales-Nápoles ◽  
Adam Kubicki ◽  
...  

Cliff coasts are dynamic environments that can retreat very quickly. However, the short-term changes and factors contributing to cliff coast erosion have not received as much attention as dune coasts. In this study, three soft-cliff systems in the southern Baltic Sea were monitored with the use of terrestrial laser scanner technology over a period of almost two years to generate a time series of thirteen topographic surveys. Digital elevation models constructed for those surveys allowed the extraction of several geomorphological indicators describing coastal dynamics. Combined with observational and modeled datasets on hydrological and meteorological conditions, descriptive and statistical analyses were performed to evaluate cliff coast erosion. A new statistical model of short-term cliff erosion was developed by using a non-parametric Bayesian network approach. The results revealed the complexity and diversity of the physical processes influencing both beach and cliff erosion. Wind, waves, sea levels, and precipitation were shown to have different impacts on each part of the coastal profile. At each level, different indicators were useful for describing the conditional dependency between storm conditions and erosion. These results are an important step toward a predictive model of cliff erosion.

2021 ◽  
Author(s):  
Pei Zhang

<p>Grainflow, a fundamental agent moving sediment from the crest to the base of dune surfaces, leaves a temporary geomorphological signature on the slipfaces of aeolian dunes. The grainflow signature reflects the complex morphodynamical interaction between wind-driven sand transport and gravity-driven grainflow on an inclined surface. The purpose of this study is to present a method to objectively and efficiently delineate grainflow boundaries and characterize their morphology features by processing Digital Elevation Models (DEMs) obtained by terrestrial laser scanner in Matlab and ArcGIS. The method allows large numbers of grainflows to be quickly and objectively delineated and extracted from LiDAR data. As an aid tp subsequent analysis, the process avoids the subjective nature of manual measurement, thereby improving the commensurability of different grainflow regimes in both terrestrial and extraterrestrial environments. The results can be compared with the available grainflows morphology characteristics which are manually measured. The method is presented here in the context of analyzing grainflows and related processes on the slipfaces of dunes, but it is applicable over the broader scope of other forms of slope failure and geophysical flows, such as avalanches, snowslides, landslides, and debris flows.</p>


Author(s):  
K. Chaidas ◽  
G. Tataris ◽  
N. Soulakellis

Abstract. In recent years 3D building modelling techniques are commonly used in various domains such as navigation, urban planning and disaster management, mostly confined to visualization purposes. The 3D building models are produced at various Levels of Detail (LOD) in the CityGML standard, that not only visualize complex urban environment but also allows queries and analysis. The aim of this paper is to present the methodology and the results of the comparison among two scenarios of LOD2 building models, which have been generated by the derivate UAS data acquired from two flight campaigns in different altitudes. The study was applied in Vrisa traditional settlement, Lesvos island, Greece, which was affected by a devastating earthquake of Mw = 6.3 on 12th June 2017. Specifically, the two scenarios were created by the results that were derived from two different flight campaigns which were: i) on 12th January 2020 with a flying altitude of 100 m and ii) on 4th February 2020 with a flying altitude of 40 m, both with a nadir camera position. The LOD2 buildings were generated in a part of Vrisa settlement consisted of 80 buildings using the footprints of the buildings, Digital Surface Models (DSMs), a Digital Elevation Model (DEM) and orthophoto maps of the area. Afterwards, a comparison was implemented between the LOD2 buildings of the two different scenarios, with their volumes and their heights. Subsequently, the heights of the LOD2 buildings were compared with the heights of the respective terrestrial laser scanner (TLS) models. Additionally, the roofs of the LOD2 buildings were evaluated through visual inspections. The results showed that the 65 of 80 LOD2 buildings were generated accurately in terms of their heights and roof types for the first scenario and 64 for the second respectively. Finally, the comparison of the results proved that the generation of post-earthquake LOD2 buildings can be achieved with the appropriate UAS data acquired at a flying altitude of 100 m and they are not affected significantly by a lower one altitude.


2020 ◽  
Vol 50 ◽  
pp. 63-73
Author(s):  
Ganbold Ulziisaikhan ◽  
Dash Oyuntsetseg

Integrating spatial data from different sources results in visualization, which is the last step in the process of digital basic topographic map creation. Digital elevation model and visualization will used for geomorphological mapping, geospatial database, urban planning and etc. Large scale topographic mapping in the world countries is really a prominent challenge in geospatial industries today. The purpose of this work is to integrate laser scanner data with the ones generated by aerial photogrammetry from UAV, to produce detailed maps that can used by geodetic engineers to optimize their analysis. In addition, terrestrial - based LiDAR scans and UAV photogrammetric data were collected in Sharga hill in the north zone of Mongolia. In this paper, different measurement technology and processing software systems combined for topographic mapping in the data processing scheme. UTM (Universal Transverse Mercator) projected coordinate system calculated in WGS84 reference ellipsoid. Feature compilation involving terrestrial laser scanner data and UAV data will integrated to offer Digital Elevation Models (DEM) as the main interest of the topographic mapping activity. Used UAV generate high-resolution orthomosaics and detailed 3D models of areas where no data, are available. That result issued to create topographic maps with a scale of 1:1000 of geodetic measurements. Preliminary results indicate that discontinuity data collection from UAV closely matches the data collected using laser scanner.


1997 ◽  
Vol 25 ◽  
pp. 85-95 ◽  
Author(s):  
Richard C. A. Hindmarsh

Linearizations about two horizontal-dimensional ice sheets are proposed as methods of generating normal mode initializations for ice-sheet models and for computing the short-term response. Linearized models can be generated directly from balance-flux calculations without the need for tuning the rate factor.A linearized model is compared with the Eismint Benchmark, and the normal modes for two coarse Antarctic digital elevation models are computed and compared. Volumetric relaxation spectra are presented. The slowest mode has a time constant comparable to that computed from scale theory.


2016 ◽  
Vol 4 (1) ◽  
pp. 253-272 ◽  
Author(s):  
Laura Stutenbecker ◽  
Anna Costa ◽  
Fritz Schlunegger

Abstract. The development of topography depends mainly on the interplay between uplift and erosion. These processes are controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables, such as anthropogenic impact. Many studies in orogens all over the world have shown how these controlling variables may affect the landscape's topography. In particular, it has been hypothesized that lithology exerts a dominant control on erosion rates and landscape morphology. However, clear demonstrations of this influence are rare and difficult to disentangle from the overprint of other signals such as climate or tectonics. In this study we focus on the upper Rhône Basin situated in the Central Swiss Alps in order to explore the relation between topography, possible controlling variables and lithology in particular. The Rhône Basin has been affected by spatially variable uplift, high orographically driven rainfalls and multiple glaciations. Furthermore, lithology and erodibility vary substantially within the basin. Thanks to high-resolution geological, climatic and topographic data, the Rhône Basin is a suitable laboratory to explore these complexities. Elevation, relief, slope and hypsometric data as well as river profile information from digital elevation models are used to characterize the landscape's topography of around 50 tributary basins. Additionally, uplift over different timescales, glacial inheritance, precipitation patterns and erodibility of the underlying bedrock are quantified for each basin. Results show that the chosen topographic and controlling variables vary remarkably between different tributary basins. We investigate the link between observed topographic differences and the possible controlling variables through statistical analyses. Variations of elevation, slope and relief seem to be linked to differences in long-term uplift rate, whereas elevation distributions (hypsometry) and river profile shapes may be related to glacial imprint. This confirms that the landscape of the Rhône Basin has been highly preconditioned by (past) uplift and glaciation. Linear discriminant analyses (LDAs), however, suggest a stronger link between observed topographic variations and differences in erodibility. We therefore conclude that despite evident glacial and tectonic conditioning, a lithologic control is still preserved and measurable in the landscape of the Rhône tributary basins.


Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 62 ◽  
Author(s):  
Antoine Mury ◽  
Antoine Collin ◽  
Dorothée James

Coastal areas are among the most endangered places in the world, due to their exposure to both marine and terrestrial hazards. Coastal areas host more than two-thirds of the world’s population, and will become increasingly affected by global changes, in particular, rising sea levels. Monitoring and protecting the coastlines have impelled scientists to develop adequate tools and methods to spatially monitor morpho-sedimentary coastal areas. This paper presents the capabilities of the aerial drone, as an “all-in-one” technology, to drive accurate morpho-sedimentary investigations in 1D, 2D and 2.5D at very high resolution. Our results show that drone-related fine-resolution, high accuracies and point density outperform the state-of-the-science manned airborne passive and active methods for shoreline position tracking, digital elevation model as well as point cloud creation. We further discuss the reduced costs per acquisition campaign, the increased spatial and temporal resolution, and demonstrate the potentialities to carry out diachronic and volumetric analyses, bringing new perspectives for coastal scientists and managers.


2009 ◽  
Vol 46 (3) ◽  
pp. 256-269 ◽  
Author(s):  
Corey R. Froese ◽  
Francisco Moreno ◽  
Michel Jaboyedoff ◽  
David M. Cruden

In 1981, an Alberta Government project upgraded the monitoring of South Peak, Turtle Mountain, on the south margin of the 1903 Frank Slide. The monitoring program aimed at understanding the rates of deformation over large, deep fractures encompassing South Peak and predicting a second large rock avalanche on the mountain. The monitoring program consisted of a complement of static ground points and remotely monitored targets measured periodically, and climatic, microseismic, and deformation data collected automatically on daily intervals and archived. In the late 1980s, developmental funding for the monitoring program ceased and some of the installations fell into disrepair. Between May 2004 and September 2006, readings from the remaining functional monitoring points were compiled and interpreted. In addition, readings compiled previously were re-interpreted based on a more recent understanding of short-term movement patterns and climatic influences. These observations were compared with recent observations from an airborne light detection and ranging (LiDAR) digital elevation model and field photographs to give more precise estimates of the overall rates, extent, and patterns of motion for the past 25 years.


Sign in / Sign up

Export Citation Format

Share Document