scholarly journals Urban Building Change Detection in SAR Images Using Combined Differential Image and Residual U-Net Network

2019 ◽  
Vol 11 (9) ◽  
pp. 1091 ◽  
Author(s):  
Lu Li ◽  
Chao Wang ◽  
Hong Zhang ◽  
Bo Zhang ◽  
Fan Wu

With the rapid development of urbanization in China, monitoring urban changes is of great significance to city management, urban planning, and cadastral map updating. Spaceborne synthetic aperture radar (SAR) sensors can capture a large area of radar images quickly with fine spatiotemporal resolution and are not affected by weather conditions, making multi-temporal SAR images suitable for change detection. In this paper, a new urban building change detection method based on an improved difference image and residual U-Net network is proposed. In order to overcome the intensity compression problem of the traditional log-ratio method, the spatial distance and intensity similarity are combined to generate a weighting function to obtain a weighted difference image. By fusing the weighted difference image and the bitemporal original images, the three-channel color difference image is generated for building change detection. Due to the complexity of urban environments and the small scale of building changes, the residual U-Net network is used instead of fixed statistical models and the construction and classifier of the network are modified to distinguish between different building changes. Three scenes of Sentinel-1 interferometric wide swath data are used to validate the proposed method. The experimental results and comparative analysis show that our proposed method is effective for urban building change detection and is superior to the original U-Net and SVM method.

Author(s):  
C. H. Yang ◽  
Y. Pang ◽  
U. Soergel

Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.


2021 ◽  
Vol 21 (2) ◽  
pp. 45-57
Author(s):  
J. Thrisul Kumar ◽  
B. M. S. Rani ◽  
M. Satish Kumar ◽  
M. V. Raju ◽  
K. Maria Das

Abstract In this paper, the main objective is to detect changes in the geographical area of Ottawa city in Canada due to floods. Two multi-temporal Synthetic Aperture Radar (SAR) images have been taken to evaluate the un-supervised change detection process. In this process, two ratio operators named as Log-Ratio and Mean-Ratio are used to generate a difference image. Performing image fusion based on DWT by selecting optimum filter coefficients by satisfying the wavelet filter coefficient properties through a novel image fusion technique is named as ADWT. GA, PSO, AntLion Optimization algorithms (ALO) and Hybridized AntLion Algorithm (HALO) have been adapted to perform the ADWT based image fusion. Segmentation has been performed based on fuzzy c-Means clustering to detect changed and unchanged pixels. Finally, the performance of the proposed method will be analysed by comparing the segmented image with the ground truth image in terms of sensitivity, accuracy, specificity, precision, F1-score.


2021 ◽  
Vol 13 (18) ◽  
pp. 3697
Author(s):  
Liangliang Li ◽  
Hongbing Ma ◽  
Zhenhong Jia

Change detection is an important task in identifying land cover change in different periods. In synthetic aperture radar (SAR) images, the inherent speckle noise leads to false changed points, and this affects the performance of change detection. To improve the accuracy of change detection, a novel automatic SAR image change detection algorithm based on saliency detection and convolutional-wavelet neural networks is proposed. The log-ratio operator is adopted to generate the difference image, and the speckle reducing anisotropic diffusion is used to enhance the original multitemporal SAR images and the difference image. To reduce the influence of speckle noise, the salient area that probably belongs to the changed object is obtained from the difference image. The saliency analysis step can remove small noise regions by thresholding the saliency map, and interest regions can be preserved. Then an enhanced difference image is generated by combing the binarized saliency map and two input images. A hierarchical fuzzy c-means model is applied to the enhanced difference image to classify pixels into the changed, unchanged, and intermediate regions. The convolutional-wavelet neural networks are used to generate the final change map. Experimental results on five SAR data sets indicated the proposed approach provided good performance in change detection compared to state-of-the-art relative techniques, and the values of the metrics computed by the proposed method caused significant improvement.


2018 ◽  
Vol 10 (8) ◽  
pp. 1295 ◽  
Author(s):  
Huifu Zhuang ◽  
Hongdong Fan ◽  
Kazhong Deng ◽  
Guobiao Yao

The neighborhood-based method was proposed and widely used in the change detection of synthetic aperture radar (SAR) images because the neighborhood information of SAR images is effective to reduce the negative effect of speckle noise. Nevertheless, for the neighborhood-based method, it is unreasonable to use a fixed window size for the entire image because the optimal window size of different pixels in an image is different. Hence, if you let the neighborhood-based method use a large window to significantly suppress noise, it cannot preserve the detail information such as the edge of a changed area. To overcome this drawback, we propose a spatial-temporal adaptive neighborhood-based ratio (STANR) approach for change detection in SAR images. STANR employs heterogeneity to adaptively select the spatial homogeneity neighborhood and uses the temporal adaptive strategy to determine multi-temporal neighborhood windows. Experimental results on two data sets show that STANR can both suppress the negative influence of noise and preserve edge details, and can obtain a better difference image than other state-of-the-art methods.


2019 ◽  
Vol 11 (2) ◽  
pp. 142 ◽  
Author(s):  
Wenping Ma ◽  
Hui Yang ◽  
Yue Wu ◽  
Yunta Xiong ◽  
Tao Hu ◽  
...  

In this paper, a novel change detection approach based on multi-grained cascade forest(gcForest) and multi-scale fusion for synthetic aperture radar (SAR) images is proposed. It detectsthe changed and unchanged areas of the images by using the well-trained gcForest. Most existingchange detection methods need to select the appropriate size of the image block. However, thesingle size image block only provides a part of the local information, and gcForest cannot achieve agood effect on the image representation learning ability. Therefore, the proposed approach choosesdifferent sizes of image blocks as the input of gcForest, which can learn more image characteristicsand reduce the influence of the local information of the image on the classification result as well.In addition, in order to improve the detection accuracy of those pixels whose gray value changesabruptly, the proposed approach combines gradient information of the difference image with theprobability map obtained from the well-trained gcForest. Therefore, the image edge information canbe enhanced and the accuracy of edge detection can be improved by extracting the image gradientinformation. Experiments on four data sets indicate that the proposed approach outperforms otherstate-of-the-art algorithms.


Author(s):  
Kiran Khandarkar ◽  
Dr. Sharvari Tamne

The research provides a method for improving change detection in SAR images using a fusion object and a supervised classification system. To remove noise from the input image, we use the DnCNN denoising approach. The data from the first image is then processed with the mean ratio operator. The log ratio operator is used to process the second image. These two images are fused together using SWT-based image fusion, and the output is sent to a supervise classifier for change detection.


2019 ◽  
Vol 52 (1) ◽  
pp. 484-492
Author(s):  
Huifu Zhuang ◽  
Zhixiang Tan ◽  
Kazhong Deng ◽  
Hongdong Fan

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Jiao Shi ◽  
Jiaji Wu ◽  
Anand Paul ◽  
Licheng Jiao ◽  
Maoguo Gong

This paper presents an unsupervised change detection approach for synthetic aperture radar images based on a fuzzy active contour model and a genetic algorithm. The aim is to partition the difference image which is generated from multitemporal satellite images into changed and unchanged regions. Fuzzy technique is an appropriate approach to analyze the difference image where regions are not always statistically homogeneous. Since interval type-2 fuzzy sets are well-suited for modeling various uncertainties in comparison to traditional fuzzy sets, they are combined with active contour methodology for properly modeling uncertainties in the difference image. The interval type-2 fuzzy active contour model is designed to provide preliminary analysis of the difference image by generating intermediate change detection masks. Each intermediate change detection mask has a cost value. A genetic algorithm is employed to find the final change detection mask with the minimum cost value by evolving the realization of intermediate change detection masks. Experimental results on real synthetic aperture radar images demonstrate that change detection results obtained by the improved fuzzy active contour model exhibits less error than previous approaches.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wenping Ma ◽  
Xiaoting Li ◽  
Yue Wu ◽  
Licheng Jiao ◽  
Dan Xing

The unsupervised approach to change detection via synthetic aperture radar (SAR) images becomes more and more popular. The three-step procedure is the most widely used procedure, but it does not work well with the Yellow River Estuary dataset obtained by two synthetic aperture radars. The difference of the two radars in imaging techniques causes severe noise, which seriously affects the difference images generated by a single change detector in step two, producing the difference image. To deal with problem, we propose a change detector to fuse the log-ratio (LR) and the mean-ratio (MR) images by a context independent variable behavior (CIVB) operator and can utilize the complement information in two ratio images. In order to validate the effectiveness of the proposed change detector, the change detector will be compared with three other change detectors, namely, the log-ratio (LR), mean-ratio (MR), and the wavelet-fusion (WR) operator, to deal with three datasets with different characteristics. The four operators are applied not only in a widely used three-step procedure but also in a new approach. The experiments show that the false alarms and overall errors of change detection are greatly reduced, and the kappa and KCC are improved a lot. And its superiority can also be observed visually.


Sign in / Sign up

Export Citation Format

Share Document