scholarly journals Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data

2019 ◽  
Vol 11 (16) ◽  
pp. 1923 ◽  
Author(s):  
Jochem Verrelst ◽  
Jorge Vicent ◽  
Juan Pablo Rivera-Caicedo ◽  
Maria Lumbierres ◽  
Pablo Morcillo-Pallarés ◽  
...  

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with the atmospheric RTM MODTRAN5. Because of MODTRAN’s computational burden and GSA’s demand for many simulations, we first developed a surrogate statistical learning model, i.e., an emulator, that allows approximating RTM outputs through a machine learning algorithm with low computation time. A Gaussian process regression (GPR) emulator was used to reproduce lookup tables of TOA radiance as a function of 12 input variables with relative errors of 2.4%. GSA total sensitivity results quantified the driving variables of emulated TOA radiance along the 400–2500 nm spectral range at 15 cm − 1 (between 0.3–9 nm); overall, the vegetation variables play a more dominant role than atmospheric variables. This suggests the possibility to retrieve biophysical variables directly from at-sensor TOA radiance data. Particularly promising are leaf chlorophyll content, leaf water thickness and leaf area index, as these variables are the most important drivers in governing TOA radiance outside the water absorption regions. A software framework was developed to facilitate the development of retrieval models from at-sensor TOA radiance data. As a proof of concept, maps of these biophysical variables have been generated for both TOA (L1C) and bottom-of-atmosphere (L2A) Sentinel-2 data by means of a hybrid retrieval scheme, i.e., training GPR retrieval algorithms using the RTM simulations. Obtained maps from L1C vs L2A data are consistent, suggesting that vegetation properties can be directly retrieved from TOA radiance data given a cloud-free sky, thus without the need of an atmospheric correction.

2019 ◽  
Vol 11 (20) ◽  
pp. 2424 ◽  
Author(s):  
Egor Prikaziuk ◽  
Christiaan van der Tol

Sentinel-3 satellite has provided simultaneous observations in the optical (visible, near infrared (NIR), shortwave infrared (SWIR)) and thermal infrared (TIR) domains since 2016, with a revisit time of 1–2 days. The high temporal resolution and spectral coverage make the data of this mission attractive for vegetation monitoring. This study explores the possibilities of using the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model together with Sentinel-3 to exploit the two sensors onboard of Sentinel-3 (the ocean and land color instrument (OLCI) and sea and land surface temperature radiometer (SLSTR)) in synergy. Sobol’ variance based global sensitivity analysis (GSA) of top of atmosphere (TOA) radiance produced with a coupled SCOPE-6S model was conducted for optical bands of OLCI and SLSTR, while another GSA of SCOPE was conducted for the land surface temperature (LST) product of SLSTR. The results show that in addition to ESA level-2 Sentinel-3 products, SCOPE is able to retrieve leaf area index (LAI), leaf chlorophyll content (Cab), leaf water content (Cw), leaf senescent material (Cs), leaf inclination distribution (LAD). Leaf dry matter content (Cdm) and soil brightness, despite being important, were not confidently retrieved in some cases. GSA of LST in TIR domain showed that plant biochemical parameters—maximum carboxylation rate (Vcmax) and stomata conductance-photosynthesis slope (Ball-Berry m)—can be constrained if prior information on near-surface weather conditions is available. We conclude that the combination of optical and thermal domains facilitates the constraint of the land surface energy balance using SCOPE.


2019 ◽  
Vol 11 (21) ◽  
pp. 2547 ◽  
Author(s):  
Siheng Wang ◽  
Dong Yang ◽  
Zhen Li ◽  
Liangyun Liu ◽  
Changping Huang ◽  
...  

Remote sensing (RS) provides operational monitoring of terrestrial vegetation. For optical RS, vegetation information is generally derived from surface reflectance (ρ). More generally, vegetation indices (VIs) are built on the basis of ρ as proxies for vegetation traits. At canopy level, ρ can be affected by a variety of factors, including leaf constituents, canopy structure, background reflectivity, and sun-sensor geometry. Consequently, VIs are mixtures of different information. In this study, a global sensitivity analysis (GSA) is made for several commonly used satellite-derived VIs in order to better understand the application of these VIs at large scales. The sensitivities of VIs to different parameters are analyzed on the basis of PROSPECT-SAIL (PROSAIL) radiative transfer model simulations, which apply for homogeneous canopies, and random forest (RF) learning. Specifically, combined factors such as canopy chlorophyll content (CCC) and canopy water content (CWC) are introduced in the RF-based GSA. We find that for most VIs, the leaf area index is the most influential factor, while the broad-band sensor-derived enhanced VI (EVI) exhibits a strong sensitivity to CCC, and the universal normalized VI (UNVI) is sensitive to CWC. The potential and uncertainty for the application of all the considered VIs are analyzed according to the GSA results. The results can help to improve the use of VIs in different contexts, and the RF-based GSA method can be further applied in more sophisticated situations.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 610
Author(s):  
Antonio Martínez-Ruiz ◽  
Agustín Ruiz-García ◽  
J. Víctor Prado-Hernández ◽  
Irineo L. López-Cruz ◽  
J. Olaf Valencia-Islas ◽  
...  

Sensitivity analysis is the first step in elucidating how the uncertainties in model parameters affect the uncertainty in model outputs. Calibration of dynamic models is another issue of considerable interest, which is usually carried out by optimizing an objective function. The first aim of this research was to perform a global sensitivity analysis (GSA) with Sobol’s method for the 16 parameters of the new HORTSYST nonlinear model that simulates photo–thermal time (PTI), daily dry matter production DMP, nitrogen uptake (Nup), leaf area index (LAI), and crop transpiration (ETc). The second objective was to carry out the calibration of the HORTSYST model by applying a differential evolution (DE) algorithm as the global optimization method. Two tomato (Solanum lycopersicum L.) crops were established during the autumn–winter and spring–summer seasons under greenhouse and soilless culture conditions. Plants were distributed with a density of 3.5 plants m−2. Air temperature and relative humidity were measured with an S-THB-M008 model sensor. Global solar radiation was measured with an S-LIB-M003 sensor connected to a U-30-NRC datalogger. In the sensitivity analysis run in the two growth stages, it was observed that a greater number of parameters were more important at the beginning of fructification than at the end of crop growth for 10% and 20% of the variation of the parameters. The sensitivity analysis came up with nine parameters (RUE, a, b, c1 , c2, A, Bd, Bn, and PTIini) as the most important of the HORTSYST model, which were included in the calibration process with the DE algorithm. The best fit, according to RMSE, was for LAI, followed by Nup, DMP, and ETc for both crop seasons; the RMSE was close to zero, indicating a good prediction of the model’s performance.


Author(s):  
Lei Xu ◽  
Wanming Zhai ◽  
Jianmin Gao

The dynamic vehicle–track interactions are complex processes due to the highly nonlinear terms and spatially varying excitations in vehicle design, track maintenance, dynamic prediction, etc. Therefore, it is of importance to clarify the key factors affecting the dynamic behaviors of system components. In this paper, a comprehensive model is presented, which is capable of analyzing the global sensitivity of vehicle–track interactions. In this model, the vehicle–track interactions considering the nonlinear wheel–rail contact geometries are depicted in three-dimensional (3D) space, and then the approaches for global sensitivity analysis (GSA) and time–frequency analysis are combined with the dynamic model. In comparison to the local sensitivity analysis, the proposed model has accounted for the coupling contributions of various factors. Thus, it is far more accurate and reliable to evaluate the critical factors dominating the vehicle–track interactions. Based on the methods developed in the present study, numerical examples have been conducted to draw the following marks: track irregularities possess the dominant role in guiding the dynamic performance of vehicle–track systems, besides, the vertical stiffness of primary suspension and rail pads also shows significant influence on vertical acceleration of the car body and the wheel–rail vertical force, respectively. Finally, a method is developed to precisely extract the characteristic wavelengths and amplitude limits of track irregularities.


2016 ◽  
Vol 8 (8) ◽  
pp. 673 ◽  
Author(s):  
Jochem Verrelst ◽  
Neus Sabater ◽  
Juan Rivera ◽  
Jordi Muñoz-Marí ◽  
Jorge Vicent ◽  
...  

2021 ◽  
Author(s):  
M. A. M. J. Sharbaf ◽  
Mohammad Javad Abedini

Abstract Global Sensitivity Analysis (GSA) plays a significant role in quantifying the tangible impact of model inputs on the uncertainty of response variable. As GSA results are strongly affected by correlated inputs, several studies considered this issue, but most of them are quite time-consuming, labor-intensive, and difficult to implement. Accordingly, this paper puts forward a novel strategy based on the Supervised Principal Component analysis (Supervised PCA), benefiting from the Reproducing Kernel Hilbert Space (RKHS). Indeed, by conducting one kind of variance-based sensitivity analysis (SA), a renowned method exclusively customized for models with orthogonal inputs, on Supervised PCA (SPCA) regression, the impact of correlation structure of input variables is effectively taken into account. The ability of the suggested technique is evaluated with five test cases as well as two hydrologic and hydraulic models, and the results are compared and contrasted with those obtained from the correlation ratio method taken as a robust benchmark solution. It is found that the proposed method satisfactorily identifies the sensitivity ordering of model inputs. Furthermore, it is proved in this study that the performance of the proposed approach is also supported by the total contribution index in the derived covariance decomposition equation. Moreover, the proposed method compared to the correlation ratio method, is found to be time efficient and easy to implement. Overall, the proposed scheme is appropriate for high dimensional, relatively nonlinear or expensive models with correlated inputs whose coefficient of determination is larger than 0.5.


Sign in / Sign up

Export Citation Format

Share Document