scholarly journals Multispectral Image-Based Estimation of Drought Patterns and Intensity around Lake Chad, Africa

2019 ◽  
Vol 11 (21) ◽  
pp. 2534 ◽  
Author(s):  
Willibroad Gabila Buma ◽  
Sang-Il Lee

As the world population keeps increasing and cultivating more land, the extraction of vegetation conditions using remote sensing is important for monitoring land changes in areas with limited ground observations. Water supply in wetlands directly affects plant growth and biodiversity, which makes monitoring drought an important aspect in such areas. Vegetation Temperature Condition Index (VTCI) which depends on thermal stress and vegetation state, is widely used as an indicator for drought monitoring using satellite data. In this study, using clear-sky Landsat multispectral images, VTCI was derived from Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI). Derived VTCI was used to observe the drought patterns of the wetlands in Lake Chad between 1999 and 2018. The proportion of vegetation from WorldView-3 images was later introduced to evaluate the methods used. With an overall accuracy exceeding 90% and a kappa coefficient greater than 0.8, these methods accurately acquired vegetation training samples and adaptive thresholds, allowing for accurate estimations of the spatially distributed VTCI. The results obtained present a coherent spatial distribution of VTCI values estimated using LST and NDVI. Most areas during the study period experienced mild drought conditions, though severe cases were often seen around the northern part of the lake. With limited in-situ data in this area, this study presents how VTCI estimations can be developed for drought monitoring using satellite observations. This further shows the usefulness of remote sensing to improve the information about areas that are difficult to access or with poor availability of conventional meteorological data.


2021 ◽  
Author(s):  
Stenka Vulova ◽  
Fred Meier ◽  
Alby Duarte Rocha ◽  
Justus Quanz ◽  
Hamideh Nouri ◽  
...  

<p>An increasing number of urban residents are affected by the urban heat island effect and water scarcity as urbanization and climate change progress. Evapotranspiration (ET) is a key component of urban greening measures aimed at addressing these issues, yet methods to estimate urban ET have thus far been limited. In this study, we present a novel approach to model urban ET at a half-hourly scale by fusing flux footprint modeling, remote sensing (RS) and geographic information system (GIS) data, and artificial intelligence (AI). We investigated this approach with a two-year dataset (2018-2020) from two eddy flux towers in Berlin, Germany. Two AI algorithms (1D convolutional neural networks and random forest) were compared. The land surface characteristics contributing to ET measurements were estimated by combining footprint modeling with RS and GIS data, which included Normalized Difference Vegetation Index (NDVI) derived from the Harmonized Landsat and Sentinel-2 (HLS) NASA product and indicators of 3D urban structure (e.g. building height). The contribution of remote sensing and meteorological data to model performance was examined by testing four predictor scenarios: (1) only reference evapotranspiration (ETo), (2) ETo and RS/ GIS data, (3) meteorological data, and (4) meteorological and RS/ GIS data. The inclusion of GIS and RS data extracted using flux footprints improved the predictive accuracy of models. The best-performing models were then used to model ET values for the year 2019 and compute monthly and annual sums of ET. A variable importance analysis highlighted the importance of the NDVI and impervious surface fraction in modeling urban ET. The 2019 ET sum was considerably higher at the site surrounded by more urban vegetation (366 mm) than at the inner-city site (223 mm). The proposed method is highly promising for modeling ET in a heterogeneous urban environment and can bolster sustainable urban planning efforts.</p>



2014 ◽  
Vol 23 (5) ◽  
pp. 649-659 ◽  
Author(s):  
Godfrey Mutowo ◽  
David Chikodzi

Purpose – Drought monitoring is an important process for national agricultural and environmental planning. Droughts are normal recurring climatic phenomena that affect people and landscapes. They occur at different scales (locally, regionally, and nationally), and for periods of time ranging from weeks to decades. In Zimbabwe drought is increasingly becoming an annual phenomenon, with varying parts of the country being affected. The purpose of this paper is to analyse the spatial variations in the seasonal occurrences of drought in Zimbabwe over a period of five years. Design/methodology/approach – The Vegetation Condition Index (VCI), which shows how close the Normalized Difference Vegetation Index of the current time is to the minimum Normalized Difference Vegetation Index calculated from the long-term record for that given time, was used to monitor drought occurrence in Zimbabwe. A time series of dekadal Normalized Difference Vegetation Index, calculated from SPOT images, was used to compute seasonal VCI maps from 2005 to 2010. The VCI maps were then classified into three drought severity classes (severe, moderate, and mild) based on the relative changes in the vegetation condition from extremely bad to optimal. Findings – The results showed that droughts occur annually in Zimbabwe though, on average, the droughts are mostly mild. The occurrence and the spatial distribution of drought in Zimbabwe was also found to be random affecting different places from season to season thus the authors conclude that most parts of the country are drought prone. Originality/value – Remote sensing technologies utilising such indices as the VCI can be used for drought monitoring in Zimbabwe.



Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 172
Author(s):  
Sara Azadi ◽  
Hojat Yazdanpanah ◽  
Mohammad Ali Nasr-Esfahani ◽  
Saeid Pourmanafi ◽  
Wouter Dorigo

The Gavkhouni wetland provides many environmental and economic benefits for the central region of Iran. In recent decades, it has completely dried up several times with substantial impacts on local ecosystems and climate. Remote sensing-based Land Surface Temperature (LST), Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI) in combination with in-situ data were used to investigate the trend of the Gavkhouni wetland dryness and the associated impact on the variability of local air temperature. The results indicate that the wetland has increasingly experienced drier conditions since the year 2000. The wetland was almost completely dry in 2009, 2011, 2015 and 2017. In addition, the results show that Gavkhouni wetland dryness has a significant impact on local climate, increasing the mean seasonal air temperature by ~1.6 °C and ~1 °C in spring and summer, respectively. Overall, this study shows that remote sensing imagery is a valuable source for monitoring dryness and air temperature variations in the region. Moreover, the results provide a basis for effective water allocation decisions to maintain the hydrological and ecological functionality of the Gavkhouni wetland. Considering that many factors such as latitude, cloud cover, and the direction of prevailing winds affect land surface and air temperatures, it is suggested to use a numerical climate model to improve a regional understanding of the effects of wetland dryness on the surrounding climate.



2021 ◽  
Vol 13 (8) ◽  
pp. 1516
Author(s):  
Boyang Li ◽  
Yaokui Cui ◽  
Xiaozhuang Geng ◽  
Huan Li

Evapotranspiration (ET) of soil-vegetation system is the main process of the water and energy exchange between the atmosphere and the land surface. Spatio-temporal continuous ET is vitally important to agriculture and ecological applications. Surface temperature and vegetation index (Ts-VI) triangle ET model based on remote sensing land surface temperature (LST) is widely used to monitor the land surface ET. However, a large number of missing data caused by the presence of clouds always reduces the availability of the main parameter LST, thus making the remote sensing-based ET estimation unavailable. In this paper, a method to improve the availability of ET estimates from Ts-VI model is proposed. Firstly, continuous LST product of the time series is obtained using a reconstruction algorithm, and then, the reconstructed LST is applied to the estimate ET using the Ts-VI model. The validation in the Heihe River Basin from 2009 to 2011 showed that the availability of ET estimates is improved from 25 days per year (d/yr) to 141 d/yr. Compared with the in situ data, a very good performance of the estimated ET is found with RMSE 1.23 mm/day and R2 0.6257 at point scale and RMSE 0.32 mm/day and R2 0.8556 at regional scale. This will improve the understanding of the water and energy exchange between the atmosphere and the land surface, especially under cloudy conditions.



2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.



2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Erika Andujar ◽  
Nir Y. Krakauer ◽  
Chuixiang Yi ◽  
Felix Kogan

Remote sensing is used for monitoring the impacts of meteorological drought on ecosystems, but few large-scale comparisons of the response timescale to drought of different vegetation remote sensing products are available. We correlated vegetation health products derived from polar-orbiting radiometer observations with a meteorological drought indicator available at different aggregation timescales, the Standardized Precipitation Evapotranspiration Index (SPEI), to evaluate responses averaged globally and over latitude and biome. The remote sensing products are Vegetation Condition Index (VCI), which uses normalized difference vegetation index (NDVI) to identify plant stress, Temperature Condition Index (TCI), based on thermal emission as a measure of surface temperature, and Vegetation Health Index (VHI), the average of VCI and TCI. Globally, TCI correlated best with 2-month timescale SPEI, VCI correlated best with longer timescale droughts (peak mean correlation at 13 months), and VHI correlated best at an intermediate timescale of 4 months. Our results suggest that thermal emission (TCI) may better detect incipient drought than vegetation color (VCI). VHI had the highest correlations with SPEI at aggregation times greater than 3 months and hence may be the most suitable product for monitoring the effects of long droughts.



2020 ◽  
Vol 12 (15) ◽  
pp. 2433 ◽  
Author(s):  
Iman Rousta ◽  
Haraldur Olafsson ◽  
Md Moniruzzaman ◽  
Hao Zhang ◽  
Yuei-An Liou ◽  
...  

Drought has severe impacts on human society and ecosystems. In this study, we used data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) sensors to examine the drought effects on vegetation in Afghanistan from 2001 to 2018. The MODIS data included the 16-day 250-m composites of the Normalized Difference Vegetation Index (NDVI) and the Vegetation Condition Index (VCI) with Land Surface Temperature (LST) images with 1 km resolution. The TRMM data were monthly rainfalls with 0.1-degree resolution. The relationship between drought and index-defined vegetation variation was examined by using time series, regression analysis, and anomaly calculation. The results showed that the vegetation coverage for the whole country, reaching the lowest levels of 6.2% and 5.5% were observed in drought years 2001 and 2008, respectively. However, there is a huge inter-regional variation in vegetation coverage in the study period with a significant rising trend in Helmand Watershed with R = 0.66 (p value = 0.05). Based on VCI for the same two years (2001 and 2008), 84% and 72% of the country were subject to drought conditions, respectively. Coherently, TRMM data confirm that 2001 and 2008 were the least rainfall years of 108 and 251 mm, respectively. On the other hand, years 2009 and 2010 were registered with the largest vegetation coverage of 16.3% mainly due to lower annual LST than average LST of 14 degrees and partially due to their slightly higher annual rainfalls of 378 and 425 mm, respectively, than the historical average of 327 mm. Based on the derived VCI, 28% and 21% of the study area experienced drought conditions in 2009 and 2010, respectively. It is also found that correlations are relatively high between NDVI and VCI (r = 0.77, p = 0.0002), but slightly lower between NDVI and precipitation (r = 0.51, p = 0.03). In addition, LST played a key role in influencing the value of NDVI. However, both LST and precipitation must be considered together in order to properly capture the correlation between drought and NDVI.



Author(s):  
Pandji W. Dhewantara ◽  
Wenbiao Hu ◽  
Wenyi Zhang ◽  
Wenwu Yin ◽  
Fan Ding ◽  
...  

ObjectiveTo quantify the effects of climate variability, selected remotely-sensed environmental factors on human leptospirosis in the high-risk counties in China.IntroductionLeptospirosis is a zoonotic disease caused by the pathogenic Leptospira bacteria and is ubiquitously distributed in tropical and subtropical regions. Leptospirosis transmission driven by complex factors include climatic, environmental and local social conditions 1. Each year, there are about 1 million cases of human leptospirosis reported globally and it causes approximately 60,000 people lost their lives due to infection 2. Yunnan Province and Sichuan Province are two of highly endemic areas in the southwest China that had contributed for 47% of the total national reported cases during 2005-2015 3. Factors underlying local leptospirosis transmission in these two areas is far from clear and thus hinder the efficacy of control strategies. Hence, it is essential to assess and identify local key drivers associated with persistent leptospirosis transmission in that areas to lay foundation for the development of early-warning systems. Currently, remote sensing technology provides broad range of physical environment data at various spatial and temporal scales 4, which can be used to understand the leptospirosis epidemiology. Utilizing satellite-based environmental data combined with locally-acquired weather data may potentially enhance existing surveillance programs in China so that the burden of leptospirosis could be reduced.MethodsThis study was carried out in two counties situated in different climatic zone in the southwestern China, Mengla and Yilong County (Fig 1). Total of 543 confirmed leptospirosis cases reported during 2006-2016 from both counties were used in this analysis. Time series decomposition was used to explore the long-term seasonality of leptospirosis incidence in two counties during the period studied. Monthly remotely-sensed environmental data such as normalized difference vegetation index (NDVI), modified normalized water difference index (MNDWI) and land surface temperature (LST) were collected from satellite databases. Climate data include monthly precipitation and relative humidity (RH) data were obtained from local weather stations. Lagged effects of rainfall, humidity, normalized difference vegetation index (NDVI), modified normalized difference water index (MNDWI) and land surface temperature (LST) on leptospirosis was examined. Generalized linear model with negative binomial link was used to assess the relationships of climatic and physical environment factors with leptospirosis. Best-fitted model was determined based on the lowest information criterion and deviance.ResultsLeptospirosis incidence in both counties showed strong and unique annual seasonality. Bi-modal temporal pattern was exhibited in Mengla County while single epidemic curve was persistently demonstrated in Yilong County (Fig 2). Total of 10 and 20 models were generated for Mengla and Yilong County, respectively. After adjusting for seasonality, final best-fitted models indicated that rainfall at lag of 6-month (incidence rate ratio (IRR)= 0.989; 95% confidence interval (CI) 0.985-0.993, p<0.001) and current LST (IRR=0.857, 95%CI:0.729-0.929, p<0.001) significantly associated with leptospirosis in Mengla County (Table 1). While in Yilong, rainfall at 1-month lag, MNDWI (5-months lag) and LST (3-months lag) were associated with an increased incidence of leptospirosis with a risk ratio of 1.013 (95%CI: 1.003-1.023), 7.960 (95%CI: 1.241-47.66) and 1.193 (95%CI:1.095-1.301), respectively.ConclusionsOur study identified lagged effect and relationships of weather and remotely-sensed environmental factors with leptospirosis in two endemic counties in China. Rainfall in combination with satellite derived physical environment factors such as flood/water indicator (MNDWI) and temperature (LST) could help explain the local epidemiology as well as good predictors for leptospirosis outbreak in both counties. This would also be an avenue for the development of leptospirosis early warning system in to support leptospirosis control in China.References1. Haake, D. A. , Levett, P. N. Leptospirosis in humans. Current Topics in Microbiology and Immunology 2015, 387, 65-97.2. Costa, F. et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLOS Neglected Tropical Diseases 2015, 9, e0003898.3. Dhewantara, P. W. et al. Epidemiological shift and geographical heterogeneity in the burden of leptospirosis in China. Infectious Diseases of Poverty 2018, 7, 57.4. Herbreteau, V., Salem, G., Souris, M., Hugot, J. P. & Gonzalez, J. P. Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration. Health & Place 2007, 13, 400-403. 



2021 ◽  
Author(s):  
Alby Duarte Rocha ◽  
Stenka Vulova ◽  
Christiaan van der Tol ◽  
Michael Förster ◽  
Birgit Kleinschmit

Abstract. Evapotranspiration (ET) is a fundamental variable to assess water balance and urban heat island effect. ET is deeply dependent on the land cover as it derives mainly from the processes of soil evaporation and plant transpiration. The majority of well-known process-based models based on the Penman-Monteith equation focus on the atmospheric interfaces (e.g. radiation, temperature and humidity), lacking explicit input parameters to describe the land surface. The model Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) accounts for a broad range of surface-atmosphere interactions to predict ET. However, like most modelling approaches, SCOPE assumes a homogeneous vegetated landscape to estimate ET. Urban environments are highly fragmented, exhibiting a blend of pervious and impervious anthropogenic surfaces. Whereas, high-resolution remote sensing (RS) and detailed GIS information to characterise land surfaces is usually available for major cities. Data describing land surface properties were used in this study to develop a method to correct bias in ET predictions caused by the assumption of homogeneous vegetation by process-based models. Two urban sites equipped with eddy flux towers presenting different levels of vegetation fraction and imperviousness located in Berlin, Germany, were used as study cases. The correction factor for urban environments has increased model accuracy significantly, reducing the relative bias in ET predictions from 0.74 to −0.001 and 2.20 to −0.13 for the two sites, respectively, considering the SCOPE model using RS data. Model errors (i.e. RMSE) were also considerably reduced in both sites, from 0.061 to 0.026 and 0.100 to 0.021, while the coefficient of determination (R2) remained similar after the correction, 0.82 and 0.47, respectively. This study presents a novel method to predict hourly urban ET using freely available RS and meteorological data, independently from the flux tower measurements. The presented method can support actions to mitigate climate change in urban areas, where most the world population lives.



Sign in / Sign up

Export Citation Format

Share Document