scholarly journals Infrared Small-Faint Target Detection Using Non-i.i.d. Mixture of Gaussians and Flux Density

2019 ◽  
Vol 11 (23) ◽  
pp. 2831 ◽  
Author(s):  
Yang Sun ◽  
Jungang Yang ◽  
Miao Li ◽  
Wei An

The robustness of infrared small-faint target detection methods to noisy situations has been a challenging and meaningful research spot. The targets are usually spatially small due to the far observation distance. Considering the underlying assumption of noise distribution in the existing methods is impractical; a state-of-the-art method has been developed to dig out valuable information in the temporal domain and separate small-faint targets from background noise. However, there are still two drawbacks: (1) The mixture of Gaussians (MoG) model assumes that noise of different frames satisfies independent and identical distribution (i.i.d.); (2) the assumption of Markov random field (MRF) would fail in more complex noise scenarios. In real scenarios, the noise is actually more complicated than the MoG model. To address this problem, a method using the non-i.i.d. mixture of Gaussians (NMoG) with modified flux density (MFD) is proposed in this paper. We firstly construct a novel data structure containing spatial and temporal information with an infrared image sequence. Then, we use an NMoG model to describe the noise, which can be separated with the background via the variational Bayes algorithm. Finally, we can select the component containing true targets through the obvious difference of target and noise in an MFD maple. Extensive experiments demonstrate that the proposed method performs better in complicated noisy scenarios than the competitive approaches.

2021 ◽  
Vol 13 (13) ◽  
pp. 2558
Author(s):  
Lei Yu ◽  
Haoyu Wu ◽  
Zhi Zhong ◽  
Liying Zheng ◽  
Qiuyue Deng ◽  
...  

Synthetic aperture radar (SAR) is an active earth observation system with a certain surface penetration capability and can be employed to observations all-day and all-weather. Ship detection using SAR is of great significance to maritime safety and port management. With the wide application of in-depth learning in ordinary images and good results, an increasing number of detection algorithms began entering the field of remote sensing images. SAR image has the characteristics of small targets, high noise, and sparse targets. Two-stage detection methods, such as faster regions with convolution neural network (Faster RCNN), have good results when applied to ship target detection based on the SAR graph, but their efficiency is low and their structure requires many computing resources, so they are not suitable for real-time detection. One-stage target detection methods, such as single shot multibox detector (SSD), make up for the shortage of the two-stage algorithm in speed but lack effective use of information from different layers, so it is not as good as the two-stage algorithm in small target detection. We propose the two-way convolution network (TWC-Net) based on a two-way convolution structure and use multiscale feature mapping to process SAR images. The two-way convolution module can effectively extract the feature from SAR images, and the multiscale mapping module can effectively process shallow and deep feature information. TWC-Net can avoid the loss of small target information during the feature extraction, while guaranteeing good perception of a large target by the deep feature map. We tested the performance of our proposed method using a common SAR ship dataset SSDD. The experimental results show that our proposed method has a higher recall rate and precision, and the F-Measure is 93.32%. It has smaller parameters and memory consumption than other methods and is superior to other methods.


2021 ◽  
Author(s):  
Alexander Kuzin ◽  
Brendan Redler ◽  
Jaya Onuska ◽  
Alexei Slesarev

Abstract Sensitive detection of off-target sites produced by gene editing nucleases is crucial for developing reliable gene therapy platforms. Although several biochemical assays for the characterization of nuclease off-target effects have been recently published, significant technical and methodological issues still remain.. Of note, existing methods rely on PCR amplification, tagging, and affinity purification which can introduce bias, contaminants, sample loss through handling, etc. Here we describe a sensitive, PCR-free next-generation sequencing method (RGEN-seq) for unbiased detection of double-stranded breaks generated by RNA-guided CRISPR-Cas9 endonuclease. Through use of novel sequencing adapters, the RGEN-Seq method saves time, simplifies workflow, and removes genomic coverage bias and gaps associated with PCR and/or other enrichment procedures. RGEN-seq is fully compatible with existing off-target detection software; moreover, the unbiased nature of RGEN-seq offers a robust foundation for relating assigned DNA cleavage scores to propensity for off-target mutations in cells. A detailed comparison of RGEN-seq with other off-target detection methods is provided using a previously characterized set of guide RNAs.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhaoli Wu ◽  
Xin Wang ◽  
Chao Chen

Due to the limitation of energy consumption and power consumption, the embedded platform cannot meet the real-time requirements of the far-infrared image pedestrian detection algorithm. To solve this problem, this paper proposes a new real-time infrared pedestrian detection algorithm (RepVGG-YOLOv4, Rep-YOLO), which uses RepVGG to reconstruct the YOLOv4 backbone network, reduces the amount of model parameters and calculations, and improves the speed of target detection; using space spatial pyramid pooling (SPP) obtains different receptive field information to improve the accuracy of model detection; using the channel pruning compression method reduces redundant parameters, model size, and computational complexity. The experimental results show that compared with the YOLOv4 target detection algorithm, the Rep-YOLO algorithm reduces the model volume by 90%, the floating-point calculation is reduced by 93.4%, the reasoning speed is increased by 4 times, and the model detection accuracy after compression reaches 93.25%.


BIBECHANA ◽  
2012 ◽  
Vol 8 ◽  
pp. 1-7
Author(s):  
Binil Aryal

Dust structures around the white dwarf WD 0253+209 is studied in 100 and 60 micron infrared image. These images are received from Infrared Astronomical Satellite Survey (IRAS Survey). The post Asymptotic Giant Branch (AGB) emission of the white dwarf's precursors' wind and the ambient interstellar matter is studied. The distribution of the relative flux density is studied and analyzed in the context of the dust color temperature, mass loading trend and the amount of total mass deposited due the interaction in the interstellar medium. The twisted curved emission structure at 100 micron in the region of interest is probably due to the interaction between the ambient interstellar medium and the He-flashes of the parent planetary nebula of the central white dwarf WD 0253+209. The total mass of the filamentary arc is found to be ~ 5 solar masses, as predicted. The mass loss rate of the post AGB star goes up to 10-5 solar masses per year. It is concluded that the first He-flash occurred at least ~2500 years ago.Keywords: white dwarf; interstellar medium; flux density; interstellar dust; mass of the gasDOI: http://dx.doi.org/10.3126/bibechana.v8i0.4806BIBECHANA 8 (2012) 1-7


2021 ◽  
Vol 233 ◽  
pp. 02012
Author(s):  
Shousheng Liu ◽  
Zhigang Gai ◽  
Xu Chai ◽  
Fengxiang Guo ◽  
Mei Zhang ◽  
...  

Bacterial colonies detecting and counting is tedious and time-consuming work. Fortunately CNN (convolutional neural network) detection methods are effective for target detection. The bacterial colonies are a kind of small targets, which have been a difficult problem in the field of target detection technology. This paper proposes a small target enhancement detection method based on double CNNs, which can not only improve the detection accuracy, but also maintain the detection speed similar to the general detection model. The detection method uses double CNNs. The first CNN uses SSD_MOBILENET_V1 network with both target positioning and target recognition functions. The candidate targets are screened out with a low confidence threshold, which can ensure no missing detection of small targets. The second CNN obtains candidate target regions according to the first round of detection, intercepts image sub-blocks one by one, uses the MOBILENET_V1 network to filter out targets with a higher confidence threshold, which can ensure good detection of small targets. Through the two-round enhancement detection method has been transplanted to the embedded platform NVIDIA Jetson AGX Xavier, the detection accuracy of small targets is significantly improved, and the target error detection rate and missed detection rate are reduced to less than 1%.


2012 ◽  
Vol 27 (6) ◽  
pp. 814-819
Author(s):  
穆治亚 MU Zhi-ya ◽  
魏仲慧 WEI Zhong-hui ◽  
何昕 HE Xin ◽  
梁国龙 LIANG Guo-long ◽  
林为才 LIN Wei-cai

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2168 ◽  
Author(s):  
Chuanyun Wang ◽  
Tian Wang ◽  
Ershen Wang ◽  
Enyan Sun ◽  
Zhen Luo

Addressing the problems of visual surveillance for anti-UAV, a new flying small target detection method is proposed based on Gaussian mixture background modeling in a compressive sensing domain and low-rank and sparse matrix decomposition of local image. First of all, images captured by stationary visual sensors are broken into patches and the candidate patches which perhaps contain targets are identified by using a Gaussian mixture background model in a compressive sensing domain. Subsequently, the candidate patches within a finite time period are separated into background images and target images by low-rank and sparse matrix decomposition. Finally, flying small target detection is achieved over separated target images by threshold segmentation. The experiment results using visible and infrared image sequences of flying UAV demonstrate that the proposed methods have effective detection performance and outperform the baseline methods in precision and recall evaluation.


Sign in / Sign up

Export Citation Format

Share Document