scholarly journals Joint Inversion of GPS, Leveling, and InSAR Data for The 2013 Lushan (China) Earthquake and Its Seismic Hazard Implications

2020 ◽  
Vol 12 (4) ◽  
pp. 715 ◽  
Author(s):  
Zhicai Li ◽  
Yangmao Wen ◽  
Peng Zhang ◽  
Yang Liu ◽  
Yong Zhang

On 20 April 2013, a moment magnitude (Mw) 6.6 earthquake occurred in the Lushan region of southwestern China and caused more than 190 fatalities. In this study, we use geodetic data from nearly 30 continuously operating global positioning system (GPS) stations, two periods of leveling data, and interferometric synthetic aperture radar (InSAR) observations to image the coseismic deformation of the Lushan earthquake. By using the Helmert variance component estimation method, a joint inversion is performed to estimate source parameters by using these GPS, leveling, and InSAR data sets. The results indicate that the 2013 Lushan earthquake occurred on a blind thrust fault. The event was dominated by thrust faulting with a minor left-lateral strike–slip component. The dip angle of the seismogenic fault was approximately 45.0°, and the fault strike was 208°, which is similar to the strike of the southern Longmenshan fault. Our finite fault model reveals that the peak slip of 0.71 m occurred at a depth of ~12 km, with substantial slip at depths of 6–20 km. The estimated magnitude was approximately Mw 6.6, consistent with seismological results. Furthermore, the calculated static Coulomb stress changes indicate that the 2013 Lushan earthquake may have been statically triggered by the 2008 Wenchuan earthquake.

2020 ◽  
Author(s):  
Pengfei Yu ◽  
Xuejun Qiao ◽  
Wei Xiong ◽  
Wei Chen ◽  
Zhaosheng Nie ◽  
...  

Abstract On January 19, 2020, an Mw 6.0 earthquake occurred in Jiashi, Xinjiang Uygur Autonomous Region of China. The epicenter was located at the basin-mountain boundary between the southern Tian Shan and the Tarim Basin. Interferometric Synthetic Aperture Radar (InSAR) is used to obtain the coseismic deformation field from both ascending and descending Sentinel-1A satellite images of the European Space Agency. The results showed that the coseismic deformation is distributed between the Kalping fault and the Ozgertaou fault. The earthquake produced significant deformation over an area of approximately 40 km by 30 km. The maximum and minimal displacements along the line of sight (LOS) are 5.3 cm and -4.2 cm for the ascending interferogram and are 7.2 cm and -3.0 cm for the descending interferogram, respectively. The fault geometry from the Multi peak Particle Swarm Optimization computation indicates that the seismogenic fault is a shallow low-dipping planar fault that is 4.58 km depth underground. The finite slip model inverted by the Steepest Descent Method implies that the rupture is dominated by a thrust fault. The slips are concentrated in a depth of 5 ~ 7 km with a maximum slip of 0.29 m. The estimated total seismic moment is 1.688×1018 Nm, corresponding to a magnitude of Mw 6.1. The seismogenic fault is the Kalping fault which has a listric structure. The coseismic deformation only occurred on the décollement layer and did not involve the ramp segment. The coseismic Coulomb stress changes have enhanced the stress on the deep margin of the Jiashi earthquake rupture area, indicating that there is still the possibility of strong earthquakes in this region in the future.


2020 ◽  
Author(s):  
Pengfei Yu ◽  
Xuejun Qiao ◽  
Wei Xiong ◽  
Wei Chen ◽  
Zhaosheng Nie ◽  
...  

Abstract On January 19, 2020, an Mw 6.0 earthquake occurred in Jiashi, Xinjiang Uygur Autonomous Region of China. The epicenter was located at the basin-mountain boundary between the southern Tian Shan and the Tarim Basin. Interferometric Synthetic Aperture Radar (InSAR) is used to obtain the coseismic deformation field from both ascending and descending Sentinel-1A satellite images of the European Space Agency. The results showed that the coseismic deformation is distributed between the Kalping fault and the Ozgertaou fault. The earthquake produced significant deformation over an area of approximately 40 km by 30 km. The maximum and minimal displacements along the line of sight (LOS) are 5.3 cm and -4.2 cm for the ascending interferogram and are 7.2 cm and -3.0 cm for the descending interferogram, respectively. The fault geometry from the Multi peak Particle Swarm Optimization computation indicates that the seismogenic fault is a shallow low-dipping planar fault that is 4.58 km depth underground. The finite slip model inverted by the Steepest Descent Method implies that the rupture is dominated by a thrust fault. The slips are concentrated in a depth of 5 ~ 7 km with a maximum slip of 0.29 m. The estimated total seismic moment is 1.688×1018 Nm, corresponding to a magnitude of Mw 6.1. The seismogenic fault is the Kalping fault which has a listric structure. The coseismic deformation only occurred on the décollement layer and did not involve the ramp segment. The coseismic Coulomb stress changes have enhanced the stress on the deep margin of the Jiashi earthquake rupture area, indicating that there is still the possibility of strong earthquakes in this region in the future.


2020 ◽  
Author(s):  
Sebastian Heimann ◽  
Marius Isken ◽  
Daniela Kühn ◽  
Hannes Vasyura-Bathke ◽  
Henriette Sudhaus ◽  
...  

<p>Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Three key ingredients can help in these situations: (1) probabilistic inference and global search of the full model space, (2) joint optimisation with datasets yielding complementary information, and (3) robust source parameterisation or additional source constraints. These demands lead to vast technical challenges, on the performance of forward modelling, on the optimisation algorithms, as well as on visualisation, optimisation configuration, and management of the datasets. Implementing a high amount of automation is inevitable.</p><p>To tackle all these challenges, we are developing a sophisticated new seismic source optimisation framework, Grond. With its innovative Bayesian bootstrap optimiser, it is able to efficiently explore large model spaces, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific source problems, the design of objective functions, and the diversity of empirical datasets.</p><p>It uses an integrated, robust waveform data processing, and allows for interactive visual inspection of many aspects of the optimisation problem, including visualisation of the result uncertainties. Grond has been applied to CMT moment tensor and finite-fault optimisations at all scales, to nuclear explosions, to a meteorite atmospheric explosion, and to volcano-tectonic processes during caldera collapse and magma ascent. Hundreds of seismic events can be handled in parallel given a single optimisation setup.</p><p>Grond can be used to optimise simultaneously seismic waveforms, amplitude spectra, waveform features, phase picks, static displacements from InSAR and GNSS, and gravitational signals.</p><p>Grond is developed as an open-source package and community effort. It builds on and integrates with other established open-source packages, like Kite (for InSAR) and Pyrocko (for seismology).</p>


2013 ◽  
Vol 56 (7) ◽  
pp. 1177-1186 ◽  
Author(s):  
ZuJun Xie ◽  
BiKai Jin ◽  
Yong Zheng ◽  
Can Ge ◽  
Xiong Xiong ◽  
...  

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Pengfei Yu ◽  
Xuejun Qiao ◽  
Wei Xiong ◽  
Wei Chen ◽  
Zhaosheng Nie ◽  
...  

Abstract On January 19, 2020, an Mw 6.0 earthquake occurred in Jiashi, Xinjiang Uygur Autonomous Region of China. The epicenter was located at the basin-mountain boundary between the southern Tian Shan and the Tarim Basin. Interferometric Synthetic Aperture Radar (InSAR) is used to obtain the coseismic deformation field from both ascending and descending Sentinel-1A satellite images of the European Space Agency. The results showed that the coseismic deformation is distributed between the Kalping fault and the Ozgertaou fault. The earthquake produced significant deformation over an area of approximately 40 km by 30 km. The maximum and minimal displacements along the line of sight (LOS) are 5.3 cm and − 4.2 cm for the ascending interferogram and are 7.2 cm and − 3.0 cm for the descending interferogram, respectively. The fault geometry from the Multi peak Particle Swarm Optimization computation indicates that the seismogenic fault is a shallow low-dipping planar fault that is 4.58 km depth underground. The finite slip model inverted by the Steepest Descent Method implies that the rupture is dominated by a thrust fault. The slips are concentrated in a depth of 5–7 km with a maximum slip of 0.29 m. The estimated total seismic moment is 1.688 × 1018 Nm, corresponding to a magnitude of Mw 6.1. The seismogenic fault is the Kalping fault which has a listric structure. The coseismic deformation only occurred on the décollement layer and did not involve the ramp segment. The coseismic Coulomb stress changes have enhanced the stress on the deep margin of the Jiashi earthquake rupture area, indicating that there is still the possibility of strong earthquakes in this region in the future.


Author(s):  
W. H. Shen ◽  
Y. Luo ◽  
Q. S. Jiao

On August 8, 2017, an earthquake of M&amp;thinsp;7.0 occurred at Jiuzhaigou. Based on the Sentinel-1 satellite InSAR data, we obtained coseismic deformation field and inverted the source slip model. Results show that this event is dominated by strike slip, and the total released seismic moment is 8.06&amp;thinsp;&amp;times;&amp;thinsp;1018&amp;thinsp;Nm, equivalent to an earthquake of <i>M<sub>w</sub></i>&amp;thinsp;~&amp;thinsp;6.57. We calculated static stress changes along strike and dip direction, and the static stress analysis show that the average stress drop are at low level, which may be responsible for the low level of ground motion during Jiuzhaigou earthquake. The coseismic Coulomb stress changes are calculated base on the inverted slip model, which revealed that 82.59&amp;thinsp;% of aftershocks are located in the Coulomb stress increasing area, 78.42&amp;thinsp;% of total aftershocks may be triggered by the mainshock aftershock, indicating that the mainshock has a significant triggering effect on the subsequent aftershocks. Based on stochastic finite fault model, we simulated regional peak ground acceleration (PGA), peak ground velocity (PGV) and the intensity, and results could capture basic features associated with the ground motion patterns. Moreover, the simulated results reflect the obvious rupture directivity effect.


Author(s):  
D. Gopinathan ◽  
M. Venugopal ◽  
D. Roy ◽  
K. Rajendran ◽  
S. Guillas ◽  
...  

Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra–Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems.


2021 ◽  
Vol 13 (19) ◽  
pp. 3961
Author(s):  
Bing Zhang ◽  
Guochang Xu ◽  
Zhiping Lu ◽  
Yufang He ◽  
Mimi Peng ◽  
...  

At 21:48 on 21 May 2021, an Ms 6.4 earthquake occurred in Yangbi County, Dali Prefecture, Yunnan Province. At present, uncertainty remains regarding the source parameters and deformation mechanism of the Yangbi earthquake. In this study, we determine fault geometry and slip distribution of the earthquake by InSAR analysis. Then, the Coulomb stress loading caused by the Yangbi earthquake is further analyzed. The results show that the moment magnitude of the Yangbi earthquake was Mw 6.14. The slip mainly occurred at depths of 3–13 km, with a maximum slip of approximately 61 cm at a depth of 6.98 km. The Yangbi earthquake was triggered by a blind fault in the NW-SE in the west parallel to the Weixi-Weishan Fault and its seismogenic fault exhibits strike-slip displacement. A large number of aftershocks were distributed along the fault rupture surface where the Coulomb stress increases. As the depth of the crust increases, the area where the Coulomb stress increases in the Yangbi earthquake, decreases. The occurrence of this earthquake also caused a significant increase in the Coulomb stress in the southeastern section of the Weixi-Weishan Faul. We should pay more attention to its seismic hazards.


2019 ◽  
Vol 11 (14) ◽  
pp. 1667 ◽  
Author(s):  
Zelong Guo ◽  
Yangmao Wen ◽  
Guangyu Xu ◽  
Shuai Wang ◽  
Xiaohang Wang ◽  
...  

In this study, Sentinel-1 and Advanced Land Observation Satellite-2 (ALOS-2) interferometric synthetic aperture radar (InSAR) and global positioning system (GPS) data were used to jointly determine the source parameters and fault slip distribution of the Mw 6.6 Hokkaido eastern Iburi, Japan, earthquake that occurred on 5 September 2018. The coseismic deformation map obtained from the ascending and descending Sentinel-1 and ALOS-2 InSAR data and GPS data is consistent with a thrust faulting event. A comparison between the InSAR-observed and GPS-projected line-of-sight (LOS) deformation suggests that descending Sentinel-1 track T046D, descending ALOS-2 track P018D, and ascending ALOS-2 track P112A and GPS data can be used to invert for the source parameters. The results of a nonlinear inversion show that the seismogenic fault is a blind NNW-trending (strike angle ~347.2°), east-dipping (dip angle ~79.6°) thrust fault. On the basis of the optimal fault geometry model, the fault slip distribution jointly inverted from the three datasets reveals that a significant slip area extends 30 km along the strike and 25 km in the downdip direction, and the peak slip magnitude can approach 0.53 m at a depth of 15.5 km. The estimated geodetic moment magnitude released by the distributed slip model is 6.16   × 10 18   N · m , equivalent to an event magnitude of Mw 6.50, which is slightly smaller than the estimates of focal mechanism solutions. According to the Coulomb stress change at the surrounding faults, more attention should be paid to potential earthquake disasters in this region in the near future. In consideration of the possibility of multi-fault rupture and complexity of regional geologic framework, the refined distributed slip and seismogenic mechanism of this deep reverse faulting should be investigated with multi-disciplinary (e.g., geodetic, seismic, and geological) data in further studies.


Sign in / Sign up

Export Citation Format

Share Document