scholarly journals Estimation of Forest Growing Stock Volume with UAV Laser Scanning Data: Can It Be Done without Field Data?

2020 ◽  
Vol 12 (8) ◽  
pp. 1245 ◽  
Author(s):  
Stefano Puliti ◽  
Johannes Breidenbach ◽  
Rasmus Astrup

Laser scanning data from unmanned aerial vehicles (UAV-LS) offer new opportunities to estimate forest growing stock volume ( V ) exclusively based on the UAV-LS data. We propose a method to measure tree attributes and using these measurements to estimate V without the use of field data for calibration. The method consists of five steps: i) Using UAV-LS data, tree crowns are automatically identified and segmented wall-to-wall. ii) From all detected tree crowns, a sample is taken where diameter at breast height (DBH) can be recorded reliably as determined by visual assessment in the UAV-LS data. iii) Another sample of crowns is taken where tree species were identifiable from UAV image data. iv) DBH and tree species models are fit using the samples and applied to all detected tree crowns. v) Single tree volumes are predicted with existing allometric models using predicted species and DBH, and height directly obtained from UAV-LS. The method was applied to a Riegl-VUX data set with an average density of 1130 points m−2 and 3 cm orthomosaic acquired over an 8.8 ha managed boreal forest. The volumes of the identified trees were aggregated to estimate plot-, stand-, and forest-level volumes which were validated using 58 independently measured field plots. The root-mean-square deviance ( R M S D % ) decreased when increasing the spatial scale from the plot (32.2%) to stand (27.1%) and forest level (3.5%). The accuracy of the UAV-LS estimates varied given forest structure and was highest in open pine stands and lowest in dense birch or spruce stands. On the forest level, the estimates based on UAV-LS data were well within the 95% confidence interval of the intense field survey estimate, and both estimates had a similar precision. While the results are encouraging for further use of UAV-LS in the context of fully airborne forest inventories, future studies should confirm our findings in a variety of forest types and conditions.

Author(s):  
Karolina Parkitna ◽  
Grzegorz Krok ◽  
Stanisław Miścicki ◽  
Krzysztof Ukalski ◽  
Marek Lisańczuk ◽  
...  

Abstract Airborne laser scanning (ALS) is one of the most innovative remote sensing tools with a recognized important utility for characterizing forest stands. Currently, the most common ALS-based method applied in the estimation of forest stand characteristics is the area-based approach (ABA). The aim of this study was to analyse how three ABA methods affect growing stock volume (GSV) estimates at the sample plot and forest stand levels. We examined (1) an ABA with point cloud metrics, (2) an ABA with canopy height model (CHM) metrics and (3) an ABA with aggregated individual tree CHM-based metrics. What is more, three different modelling techniques: multiple linear regression, boosted regression trees and random forest, were applied to all ABA methods, which yielded a total of nine combinations to report. An important element of this work is also the empirical verification of the methods for estimating the GSV error for individual forest stand. All nine combinations of the ABA methods and different modelling techniques yielded very similar predictions of GSV for both sample plots and forest stands. The root mean squared error (RMSE) of estimated GSV ranged from 75 to 85 m3 ha−1 (RMSE% = 20.5–23.4 per cent) and from 57 to 64 m3 ha−1 (RMSE% = 16.4–18.3 per cent) for plots and stands, respectively. As a result of the research, it can be concluded that GSV modelling with the use of different ALS processing approaches and statistical methods leads to very similar results. Therefore, the choice of a GSV prediction method may be more determined by the availability of data and competences than by the requirement to use a particular method.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Ernest William Mauya ◽  
Joni Koskinen ◽  
Katri Tegel ◽  
Jarno Hämäläinen ◽  
Tuomo Kauranne ◽  
...  

Remotely sensed assisted forest inventory has emerged in the past decade as a robust and cost efficient method for generating accurate information on forest biophysical parameters. The launching and public access of ALOS PALSAR-2, Sentinel-1 (SAR), and Sentinel-2 together with the associated open-source software, has further increased the opportunity for application of remotely sensed data in forest inventories. In this study, we evaluated the ability of ALOS PALSAR-2, Sentinel-1 (SAR) and Sentinel-2 and their combinations to predict growing stock volume in small-scale forest plantations of Tanzania. The effects of two variable extraction approaches (i.e., centroid and weighted mean), seasonality (i.e., rainy and dry), and tree species on the prediction accuracy of growing stock volume when using each of the three remotely sensed data were also investigated. Statistical models relating growing stock volume and remotely sensed predictor variables at the plot-level were fitted using multiple linear regression. The models were evaluated using the k-fold cross validation and judged based on the relative root mean square error values (RMSEr). The results showed that: Sentinel-2 (RMSEr = 42.03% and pseudo − R2 = 0.63) and the combination of Sentinel-1 and Sentinel-2 (RMSEr = 46.98% and pseudo − R2 = 0.52), had better performance in predicting growing stock volume, as compared to Sentinel-1 (RMSEr = 59.48% and pseudo − R2 = 0.18) alone. Models fitted with variables extracted from the weighted mean approach, turned out to have relatively lower RMSEr % values, as compared to centroid approaches. Sentinel-2 rainy season based models had slightly smaller RMSEr values, as compared to dry season based models. Dense time series (i.e., annual) data resulted to the models with relatively lower RMSEr values, as compared to seasonal based models when using variables extracted from the weighted mean approach. For the centroid approach there was no notable difference between the models fitted using dense time series versus rain season based predictor variables. Stratifications based on tree species resulted into lower RMSEr values for Pinus patula tree species, as compared to other tree species. Finally, our study concluded that combination of Sentinel-1&2 as well as the use Sentinel-2 alone can be considered for remote-sensing assisted forest inventory in the small-scale plantation forests of Tanzania. Further studies on the effect of field plot size, stratification and statistical methods on the prediction accuracy are recommended.


Author(s):  
C. Mulsow ◽  
G. Mandlburger ◽  
H.-G. Maas

Abstract. The paper describes and compares the workflows and results of generating digital elevation models (DEMs) of underwater areas from airborne laser scanning and aerial stereo images. Based on a combined laser scanning/image data set of an artificial lake, both methods are described and pros/cons are highlighted. The authors focus on the final results, especially on accuracy, completeness and spatial resolution of the underwater DEM’s. Further, practical aspects of processing and complexity of both methods are highlighted too.


Author(s):  
S. Deng ◽  
M. Katoh ◽  
Y. Takenaka ◽  
K. Cheung ◽  
A. Ishii ◽  
...  

This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (<i>Pinus densiflora</i>, <i>Larix kaempferi</i>, <i>Cryptomeria japonica</i>, and broadleaved trees), and 13 classes for the third level (three coniferous and ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90&amp;thinsp;% at the first and second levels but less than 60&amp;thinsp;% at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.


2020 ◽  
Vol 12 (22) ◽  
pp. 3710 ◽  
Author(s):  
Veerle Plakman ◽  
Thomas Janssen ◽  
Nienke Brouwer ◽  
Sander Veraverbeke

Detailed information about tree species composition is critical to forest managers and ecologists. In this study, we used Sentinel-2 imagery in combination with a canopy height model (CHM) derived from airborne laser scanning (ALS) to map individual tree crowns and identify them to species level. Our study area covered 140 km2 of a mainly mixed temperate forest in the Veluwe area in The Netherlands. Ground truth data on tree species were acquired for 2460 trees. Tree crowns were automatically delineated from the CHM model. We identified the delineated tree crowns to species and phylum level (angiosperm vs. gymnosperm) using a random forest (RF) classification. The RF model used multitemporal spectral variables from Sentinel-2 and crown structural variables from the CHM and was validated using an independent dataset. Different combinations of variables were tested. After feature reduction from 25 to 15 features, the RF model identified tree crowns with an overall accuracy of 78.5% (Kappa value 0.75) for tree species and 84.5% (Kappa value 0.73) for tree phyla whilst using the combination of all variables. Adding crown structural and multitemporal spectral information improved the RF classification compared to using only a Sentinel image from one season as input data. The producer’s accuracies varied between 43.8% for Norway spruce (Picea abies) to 95.3% for Douglas fir (Pseudotsuga menziesii). The RF model was extrapolated to generate a tree species map over a study area (140 km2). The map showed high abundances of common oak (Quercus robur; 35.5%) and Scots pine (Pinus sylvestris; 22.8%) and low abundances of Norway spruce (Picea abies; 1.7%) and Douglas fir (Pseudotsuga menziesii; 2.8%). Our results indicate a high potential for individual tree classification based on Sentinel-2 imagery and automatically derived tree crowns from canopy height models.


Sign in / Sign up

Export Citation Format

Share Document