scholarly journals Unseen Land Cover Classification from High-Resolution Orthophotos Using Integration of Zero-Shot Learning and Convolutional Neural Networks

2020 ◽  
Vol 12 (10) ◽  
pp. 1676 ◽  
Author(s):  
Biswajeet Pradhan ◽  
Husam A. H. Al-Najjar ◽  
Maher Ibrahim Sameen ◽  
Ivor Tsang ◽  
Abdullah M. Alamri

Zero-shot learning (ZSL) is an approach to classify objects unseen during the training phase and shown to be useful for real-world applications, especially when there is a lack of sufficient training data. Only a limited amount of works has been carried out on ZSL, especially in the field of remote sensing. This research investigates the use of a convolutional neural network (CNN) as a feature extraction and classification method for land cover mapping using high-resolution orthophotos. In the feature extraction phase, we used a CNN model with a single convolutional layer to extract discriminative features. In the second phase, we used class attributes learned from the Word2Vec model (pre-trained by Google News) to train a second CNN model that performed class signature prediction by using both the features extracted by the first CNN and class attributes during training and only the features during prediction. We trained and tested our models on datasets collected over two subareas in the Cameron Highlands (training dataset, first test dataset) and Ipoh (second test dataset) in Malaysia. Several experiments have been conducted on the feature extraction and classification models regarding the main parameters, such as the network’s layers and depth, number of filters, and the impact of Gaussian noise. As a result, the best models were selected using various accuracy metrics such as top-k categorical accuracy for k = [1,2,3], Recall, Precision, and F1-score. The best model for feature extraction achieved 0.953 F1-score, 0.941 precision, 0.882 recall for the training dataset and 0.904 F1-score, 0.869 precision, 0.949 recall for the first test dataset, and 0.898 F1-score, 0.870 precision, 0.838 recall for the second test dataset. The best model for classification achieved an average of 0.778 top-one, 0.890 top-two and 0.942 top-three accuracy, 0.798 F1-score, 0.766 recall and 0.838 precision for the first test dataset and 0.737 top-one, 0.906 top-two, 0.924 top-three, 0.729 F1-score, 0.676 recall and 0.790 precision for the second test dataset. The results demonstrated that the proposed ZSL is a promising tool for land cover mapping based on high-resolution photos.

2020 ◽  
Vol 12 (9) ◽  
pp. 1418
Author(s):  
Runmin Dong ◽  
Cong Li ◽  
Haohuan Fu ◽  
Jie Wang ◽  
Weijia Li ◽  
...  

Substantial progress has been made in the field of large-area land cover mapping as the spatial resolution of remotely sensed data increases. However, a significant amount of human power is still required to label images for training and testing purposes, especially in high-resolution (e.g., 3-m) land cover mapping. In this research, we propose a solution that can produce 3-m resolution land cover maps on a national scale without human efforts being involved. First, using the public 10-m resolution land cover maps as an imperfect training dataset, we propose a deep learning based approach that can effectively transfer the existing knowledge. Then, we improve the efficiency of our method through a network pruning process for national-scale land cover mapping. Our proposed method can take the state-of-the-art 10-m resolution land cover maps (with an accuracy of 81.24% for China) as the training data, enable a transferred learning process that can produce 3-m resolution land cover maps, and further improve the overall accuracy (OA) to 86.34% for China. We present detailed results obtained over three mega cities in China, to demonstrate the effectiveness of our proposed approach for 3-m resolution large-area land cover mapping.


Author(s):  
Runmin Dong ◽  
Weizhen Fang ◽  
Haohuan Fu ◽  
Lin Gan ◽  
Jie Wang ◽  
...  

2017 ◽  
Author(s):  
Federico Carotenuto ◽  
Teodoro Georgiadis ◽  
Beniamino Gioli ◽  
Christel Leyronas ◽  
Cindy E. Morris ◽  
...  

Abstract. Microbial aerosols (mainly composed by bacterial and fungal cells), may constitute up to 74 % of the total aerosol volume. These biological aerosols are relevant not only from the point of view of the dispersion of pathogenic species, but also due to the potential geochemical implications. Some bacteria and fungi may, in fact, serve as cloud condensation or ice nuclei, potentially affecting cloud formation and precipitation and are active at higher temperatures compared to their, much more intensively studied, inorganic counterparts. Simulations of the impact of microbial aerosols on climate are still hindered by the lack of information regarding their emissions from ground sources. This work tackles this knowledge gap by (i) applying a rigorous micrometeorological approach to the estimation of microbial net fluxes above a Mediterranean grassland and (ii) developing a deterministic model to estimate these emissions on the basis of a few easily recovered meteorological parameters (the PLAnET model). The grassland itself is characterized by an abundance of positive net microbial fluxes and the model proves to be a promising tool capable of capturing the day-to-day variability in microbial fluxes with a relatively small bias and sufficient accuracy. PLAnET is still in its infancy and will benefit from future campaigns extending the available training dataset as well as the inclusion of ever more complex and critical phenomena affecting the release of microbial aerosol (such as rainfall). The model itself is also adaptable as an emission module for dispersion and chemical transport models, allowing to further explore the impact of microbial aerosols on the atmosphere and climate.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3232 ◽  
Author(s):  
Yan Liu ◽  
Qirui Ren ◽  
Jiahui Geng ◽  
Meng Ding ◽  
Jiangyun Li

Efficient and accurate semantic segmentation is the key technique for automatic remote sensing image analysis. While there have been many segmentation methods based on traditional hand-craft feature extractors, it is still challenging to process high-resolution and large-scale remote sensing images. In this work, a novel patch-wise semantic segmentation method with a new training strategy based on fully convolutional networks is presented to segment common land resources. First, to handle the high-resolution image, the images are split as local patches and then a patch-wise network is built. Second, training data is preprocessed in several ways to meet the specific characteristics of remote sensing images, i.e., color imbalance, object rotation variations and lens distortion. Third, a multi-scale training strategy is developed to solve the severe scale variation problem. In addition, the impact of conditional random field (CRF) is studied to improve the precision. The proposed method was evaluated on a dataset collected from a capital city in West China with the Gaofen-2 satellite. The dataset contains ten common land resources (Grassland, Road, etc.). The experimental results show that the proposed algorithm achieves 54.96% in terms of mean intersection over union (MIoU) and outperforms other state-of-the-art methods in remote sensing image segmentation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hua Zheng ◽  
Zhenglong Wu ◽  
Shiqiang Duan ◽  
Jiangtao Zhou

Due to the inevitable deviations between the results of theoretical calculations and physical experiments, flutter tests and flutter signal analysis often play significant roles in designing the aeroelasticity of a new aircraft. The measured structural response from aeroelastic models in both wind tunnel tests and real fight flutter tests contain an abundance of structural information, but traditional methods tend to have limited ability to extract features of concern. Inspired by deep learning concepts, a novel feature extraction method for flutter signal analysis was established in this study by combining the convolutional neural network (CNN) with empirical mode decomposition (EMD). It is widely hypothesized that when flutter occurs, the measured structural signals are harmonic or divergent in the time domain, and that the flutter modal (1) is singular and (2) its energy increases significantly in the frequency domain. A measured-signal feature extraction and flutter criterion framework was constructed accordingly. The measured signals from a wind tunnel test were manually labeled “flutter” and “no-flutter” as the foundational dataset for the deep learning algorithm. After the normalized preprocessing, the intrinsic mode functions (IMFs) of the flutter test signals are obtained by the EMD method. The IMFs are then reshaped to make them the suitable size to be input to the CNN. The CNN parameters are optimized though the training dataset, and the trained model is validated through the test dataset (i.e., cross-validation). The accuracy rate of the proposed method reached 100% on the test dataset. The training model appears to effectively distinguish whether or not the structural response signal contains flutter. The combination of EMD and CNN provides effective feature extraction of time series signals in flutter test data. This research explores the connection between structural response signals and flutter from the perspective of artificial intelligence. The method allows for real-time, online prediction with low computational complexity.


2020 ◽  
Vol 247 ◽  
pp. 111945 ◽  
Author(s):  
Yindan Zhang ◽  
Gang Chen ◽  
Jelena Vukomanovic ◽  
Kunwar K. Singh ◽  
Yong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document