scholarly journals The Impact of Non-Photosynthetic Vegetation on LAI Estimation by NDVI in Mixed Grassland

2020 ◽  
Vol 12 (12) ◽  
pp. 1979
Author(s):  
Dandan Xu ◽  
Deshuai An ◽  
Xulin Guo

Leaf area index (LAI) is widely used for algorithms and modelling in the field of ecology and land surface processes. At a global scale, normalized difference vegetation index (NDVI) products generated by different remote sensing satellites, have provided more than 40 years of time series data for LAI estimation. NDVI saturation issues are reported in agriculture and forest ecosystems at high LAI values, creating a challenge when using NDVI to estimate LAI. However, NDVI saturation is not reported on LAI estimation in grasslands. Previous research implies that non-photosynthetic vegetation (NPV) reduces the accuracy of LAI estimation from NDVI and other vegetation indices. A question arises: is the absence of NDVI saturation in grasslands a result of low LAI value, or is it caused by NPV? This study aims to explore whether there is an NDVI saturation issue in mixed grassland, and how NPV may influence LAI estimation by NDVI. In addition, in-situ measured plant area index (PAI) by sensors that detect light interception through the vegetation canopy (e.g., Li-cor LAI-2000), the most widely used field LAI collection method, might create bias in LAI estimation or validation using NDVI. Thus, this study also aims to quantify the contribution of green vegetation (GV) and NPV on in-situ measured PAI. The results indicate that NDVI saturation (using the portion of NDVI only contributed by GV) exists in grassland at high LAI (LAI threshold is much lower than that reported for other ecosystems in the literature), and that the presence of NPV can override the saturation effects of NDVI used to estimate green LAI. The results also show that GV and NPV in mixed grassland explain, respectively, the 60.33% and 39.67% variation of in-situ measured PAI by LAI-2000.

Author(s):  
D. Ratha ◽  
D. Mandal ◽  
S. Dey ◽  
A. Bhattacharya ◽  
A. Frery ◽  
...  

Abstract. In this paper, we present two radar vegetation indices for full-pol and compact-pol SAR data, respectively. Both are derived using the notion of a geodesic distance between observation and well-known scattering models available in the literature. While the full-pol version depends on a generalized volume scattering model, the compact-pol version uses the ideal depolariser to model the randomness in the vegetation. We have utilized the RADARSAT Constellation Mission (RCM) time-series data from the SAMPVEX16-MB campaign in the Manitoba region of Canada for comparing and assessing the indices in terms of the change in the biophysical parameters as well. The compact-pol data for comparison is simulated from the full-pol RCM time series. Both the indices show better performance at correlating with biophysical parameters such as Plant Area Index (PAI) and Volumetric Water Content (VWC) for wheat and soybean crops, in comparison to the state-of-art Radar Vegetation Index (RVI) of Kim and van Zyl. These indices are timely for the upcoming release of the data from the RCM, which will provide data in both full and compact-pol modes, aimed at better crop monitoring from space.


2019 ◽  
Vol 11 (21) ◽  
pp. 2558 ◽  
Author(s):  
Emily Myers ◽  
John Kerekes ◽  
Craig Daughtry ◽  
Andrew Russ

Agricultural monitoring is an important application of earth-observing satellite systems. In particular, image time-series data are often fit to functions called shape models that are used to derive phenological transition dates or predict yield. This paper aimed to investigate the impact of imaging frequency on model fitting and estimation of corn phenological transition timing. Images (PlanetScope 4-band surface reflectance) and in situ measurements (Soil Plant Analysis Development (SPAD) and leaf area index (LAI)) were collected over a corn field in the mid-Atlantic during the 2018 growing season. Correlation was performed between candidate vegetation indices and SPAD and LAI measurements. The Normalized Difference Vegetation Index (NDVI) was chosen for shape model fitting based on the ground truth correlation and initial fitting results. Plot-average NDVI time-series were cleaned and fit to an asymmetric double sigmoid function, from which the day of year (DOY) of six different function parameters were extracted. These points were related to ground-measured phenological stages. New time-series were then created by removing images from the original time-series, so that average temporal spacing between images ranged from 3 to 24 days. Fitting was performed on the resampled time-series, and phenological transition dates were recalculated. Average range of estimated dates increased by 1 day and average absolute deviation between dates estimated from original and resampled time-series data increased by 1/3 of a day for every day of increase in average revisit interval. In the context of this study, higher imaging frequency led to greater precision in estimates of shape model fitting parameters used to estimate corn phenological transition timing.


2020 ◽  
Vol 194 ◽  
pp. 05047
Author(s):  
Rong Liu ◽  
Fang Huang ◽  
Yue Ren

Ecosystem functional types (EFTs) are the patches of land surface showing similar in carbon dynamics. EFTs are not defined by the structure and composition of vegetation and represent the spatial heterogeneity of ecosystem functions. Identifying EFTs based on low-resolution satellite remote sensing data cannot satisfy the needs of fine-scale characterization of regional ecosystem functional patterns. Here, taking Zhenlai County, Northeast China as an example, the heterogeneity in ecosystem functions was characterized by identifying EFTs from Sentinel-2 time series data using ISODATA algorithm. Ecosystem functional attributes derived from dynamics of the normalized difference vegetation index (NDVI), the fraction of absorbed photosynthetically active radiation (FAPAR), and canopy water content (CWC) in the growing season were calculated. The correspondence analysis (CA) method was used to reveal relationships between the EFTs and land cover types. Our results showed that the nine selected remotely sensed variables indicating carbon and water flux of the regional ecosystems could be adopted in ecosystem functions classification. The obtained EFTs based on Sentinel-2 images reflected the internal structure of carbon balance well and the distribution pattern of ecosystem functional diversity a fine scale. This study helps to understand the functional heterogeneity pattern of temperate terrestrial ecosystems.


2020 ◽  
Vol 12 (7) ◽  
pp. 1207 ◽  
Author(s):  
Jian Zhang ◽  
Chufeng Wang ◽  
Chenghai Yang ◽  
Tianjin Xie ◽  
Zhao Jiang ◽  
...  

The spatial resolution of in situ unmanned aerial vehicle (UAV) multispectral images has a crucial effect on crop growth monitoring and image acquisition efficiency. However, existing studies about optimal spatial resolution for crop monitoring are mainly based on resampled images. Therefore, the resampled spatial resolution in these studies might not be applicable to in situ UAV images. In order to obtain optimal spatial resolution of in situ UAV multispectral images for crop growth monitoring, a RedEdge Micasense 3 camera was installed onto a DJI M600 UAV flying at different heights of 22, 29, 44, 88, and 176m to capture images of seedling rapeseed with ground sampling distances (GSD) of 1.35, 1.69, 2.61, 5.73, and 11.61 cm, respectively. Meanwhile, the normalized difference vegetation index (NDVI) measured by a GreenSeeker (GS-NDVI) and leaf area index (LAI) were collected to evaluate the performance of nine vegetation indices (VIs) and VI*plant height (PH) at different GSDs for rapeseed growth monitoring. The results showed that the normalized difference red edge index (NDRE) had a better performance for estimating GS-NDVI (R2 = 0.812) and LAI (R2 = 0.717), compared with other VIs. Moreover, when GSD was less than 2.61 cm, the NDRE*PH derived from in situ UAV images outperformed the NDRE for LAI estimation (R2 = 0.757). At oversized GSD (≥5.73 cm), imprecise PH information and a large heterogeneity within the pixel (revealed by semi-variogram analysis) resulted in a large random error for LAI estimation by NDRE*PH. Furthermore, the image collection and processing time at 1.35 cm GSD was about three times as long as that at 2.61 cm. The result of this study suggested that NDRE*PH from UAV multispectral images with a spatial resolution around 2.61 cm could be a preferential selection for seedling rapeseed growth monitoring, while NDRE alone might have a better performance for low spatial resolution images.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomoaki Miura ◽  
Shin Nagai ◽  
Mika Takeuchi ◽  
Kazuhito Ichii ◽  
Hiroki Yoshioka

Abstract Spectral vegetation index time series data, such as the normalized difference vegetation index (NDVI), from moderate resolution, polar-orbiting satellite sensors have widely been used for analysis of vegetation seasonal dynamics from regional to global scales. The utility of these datasets is often limited as frequent/persistent cloud occurrences reduce their effective temporal resolution. In this study, we evaluated improvements in capturing vegetation seasonal changes with 10-min resolution NDVI data derived from Advanced Himawari Imager (AHI), one of new-generation geostationary satellite sensors. Our analysis was focused on continuous monitoring sites, representing three major ecosystems in Central Japan, where in situ time-lapse digital images documenting sky and surface vegetation conditions were available. The very large number of observations available with AHI resulted in improved NDVI temporal signatures that were remarkably similar to those acquired with in situ spectrometers and captured seasonal changes in vegetation and snow cover conditions in finer detail with more certainty than those obtained from Visible Infrared Imaging Radiometer Suite (VIIRS), one of the latest polar-orbiting satellite sensors. With the ability to capture in situ-quality NDVI temporal signatures, AHI “hypertemporal” data have the potential to improve spring and autumn phenology characterisation as well as the classification of vegetation formations.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


2019 ◽  
Vol 11 (14) ◽  
pp. 1656 ◽  
Author(s):  
Manuela Balzarolo ◽  
Josep Peñuelas ◽  
Frank Veroustraete

The objective of this paper was to evaluate the use of in situ normalized difference vegetation index (NDVIis) and Moderate Resolution Imaging Spectroradiometer NDVI (NDVIMD) time series data as proxies for ecosystem gross primary productivity (GPP) to improve GPP upscaling. We used GPP flux data from 21 global FLUXNET sites across main global biomes (forest, grassland, and cropland) and derived MODIS NDVI at contrasting spatial resolutions (between 0.5 × 0.5 km and 3.5 × 3.5 km) centered at flux tower location. The goodness of the relationship between NDVIis and NDVIMD varied across biomes, sites, and MODIS spatial resolutions. We found a strong relationship with a low variability across sites and within year variability in deciduous broadleaf forests and a poor correlation in evergreen forests. Best performances were obtained for the highest spatial resolution at 0.5 × 0.5 km). Both NDVIis and NDVIMD elicited roughly three weeks later the starting of the growing season compared to GPP data. Our results confirm that to improve the accuracy of upscaling in situ data of site GPP seasonal responses, in situ radiation measurement biomes should use larger field of view to sense an area, or more sensors should be placed in the flux footprint area to allow optimal match with satellite sensor pixel size.


2010 ◽  
Vol 19 (1) ◽  
pp. 75 ◽  
Author(s):  
Willem J. D. van Leeuwen ◽  
Grant M. Casady ◽  
Daniel G. Neary ◽  
Susana Bautista ◽  
José Antonio Alloza ◽  
...  

Due to the challenges faced by resource managers in maintaining post-fire ecosystem health, there is a need for methods to assess the ecological consequences of disturbances. This research examines an approach for assessing changes in post-fire vegetation dynamics for sites in Spain, Israel and the USA that burned in 1998, 1999 and 2002 respectively. Moderate Resolution Imaging Spectroradiometer satellite Normalized Difference Vegetation Index (NDVI) time-series data (2000–07) are used for all sites to characterise and track the seasonal and spatial changes in vegetation response. Post-fire trends and metrics for burned areas are evaluated and compared with unburned reference sites to account for the influence of local environmental conditions. Time-series data interpretation provides insights into climatic influences on the post-fire vegetation. Although only two sites show increases in post-fire vegetation, all sites show declines in heterogeneity across the site. The evaluation of land surface phenological metrics, including the start and end of the season, the base and peak NDVI, and the integrated seasonal NDVI, show promising results, indicating trends in some measures of post-fire phenology. Results indicate that this monitoring approach, based on readily available satellite-based time-series vegetation data, provides a valuable tool for assessing post-fire vegetation response.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


Sign in / Sign up

Export Citation Format

Share Document