scholarly journals Remote Sensing Estimation of Regional NO2 via Space-Time Neural Networks

2020 ◽  
Vol 12 (16) ◽  
pp. 2514
Author(s):  
Tongwen Li ◽  
Yuan Wang ◽  
Qiangqiang Yuan

Nitrogen dioxide (NO2) is an essential air pollutant related to adverse health effects. A space-time neural network model is developed for the estimation of ground-level NO2 in this study by integrating ground NO2 station measurements, satellite NO2 products, simulation data, and other auxiliary data. Specifically, a geographically and temporally weighted generalized regression neural network (GTW-GRNN) model is used with the advantage to consider the spatiotemporal variations of the relationship between NO2 and influencing factors in a nonlinear neural network framework. The case study across the Wuhan urban agglomeration (WUA), China, indicates that the GTW-GRNN model outperforms the widely used geographically and temporally weighted regression (GTWR), with the site-based cross-validation R2 value increasing by 0.08 (from 0.61 to 0.69). Besides, the comparison between the GTW-GRNN and original global GRNN models shows that considering the spatiotemporal variations in GRNN modeling can boost estimation accuracy. All these results demonstrate that the GTW-GRNN based NO2 estimation framework will be of great use for remote sensing of ground-level NO2 concentrations.

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 778 ◽  
Author(s):  
Zhou ◽  
Wu ◽  
Zhou ◽  
Fang ◽  
Zheng ◽  
...  

The diameter at breast height (DBH) is an important factor used to estimate important forestry indices like forest growing stock, basal area, biomass, and carbon stock. The traditional DBH ground surveys are time-consuming, labor-intensive, and expensive. To reduce the traditional ground surveys, this study focused on the prediction of unknown DBH in forest stands using existing measured data. As a comparison, the tree age was first used as the only independent variable in establishing 13 kinds of empirical models to fit the relationship between the age and DBH of the forest subcompartments and predict DBH growth. Second, the initial independent variables were extended to 19 parameters, including 8 ecological and biological factors and 11 remote sensing factors. By introducing the Spearman correlation analysis, the independent variable parameters were dimension-reduced to satisfy very significant conditions (p ≤ 0.01) and a relatively large correlation coefficient (r ≥ 0.1). Finally, the remaining independent variables were involved in the modeling and prediction of DBH using a multivariate linear regression (MLR) model and generalized regression neural network (GRNN) model. The (root-mean-squared errors) RMSEs of MLR and GRNN were 1.9976 cm and 1.9655 cm, respectively, and the R2 were 0.6459 and 0.6574 respectively, which were much better than the values for the 13 traditional empirical age–DBH models. The use of comprehensive factors is beneficial to improving the prediction accuracy of both the MLR and GRNN models. Regardless of whether remote sensing image factors were included, the experimental results produced by GRNN were better than MLR. By synthetically introducing ecological, biological, and remote sensing factors, GRNN produced the best results with 1.4688 cm in mean absolute error (MAE), 13.78% in MAPE, 1.9655 cm for the RMSE, 0.6574 for the R2, and 0.0810 for the Theil’s inequality coefficient (TIC), respectively. For modeling and prediction based on more complex tree species and a wider range of samples, GRNN is a desirable model with strong generalizability.


2019 ◽  
Vol 11 (6) ◽  
pp. 646 ◽  
Author(s):  
Bo Zhang ◽  
Meng Zhang ◽  
Jian Kang ◽  
Danfeng Hong ◽  
Jian Xu ◽  
...  

The estimation of PMx (incl. PM10 and PM2.5) concentrations using satellite observations is of great significance for detecting environmental issues in many urban areas of north China. Recently, aerosol optical depth (AOD) data have been being used to estimate the PMx concentrations by implementing linear and/or nonlinear regression analysis methods. However, a lot of relevant research based on AOD published so far have demonstrated some limitations in estimating the spatial distribution of PMx concentrations with respect to estimation accuracy and spatial resolution. In this research, the Google Earth Engine (GEE) platform is employed to obtain the band reflectance (BR) data of a large number of Landsat 8 Operational Land Imager (OLI) remote sensing images. Combined with the meteorological, time parameter and the latitude and longitude zone (LLZ) method proposed in this article, a new BR (band reflectance)-PMx (incl. PM10 and PM2.5) model based on a multilayer perceptron neural network is constructed for the estimation of PMx concentrations directly from Landsat 8 OLI remote sensing images. This research used Beijing, China as the test area and the conducted experiments demonstrated that the BR-PMx model achieved satisfactory performances for the PMx-concentration estimations. The coefficient of determination (R2) of the BR-PM2.5 and BR-PM10 models reached 0.795 and 0.773, respectively, and the root mean square error (RMSE) reached 20.09 μg/m3 and 31.27 μg/m3. Meanwhile, the estimation results have been compared with the results calculated by Kriging interpolation at the same time point, and the spatial distribution is consistent. Therefore, it can be concluded that the proposed BR-PMx model provides a new promising method for acquiring accurate PMx concentrations for various cities of China.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2013 ◽  
Vol 11 (4) ◽  
pp. 457-466

Artificial neural networks are one of the advanced technologies employed in hydrology modelling. This paper investigates the potential of two algorithm networks, the feed forward backpropagation (BP) and generalized regression neural network (GRNN) in comparison with the classical regression for modelling the event-based suspended sediment concentration at Jiasian diversion weir in Southern Taiwan. For this study, the hourly time series data comprised of water discharge, turbidity and suspended sediment concentration during the storm events in the year of 2002 are taken into account in the models. The statistical performances comparison showed that both BP and GRNN are superior to the classical regression in the weir sediment modelling. Additionally, the turbidity was found to be a dominant input variable over the water discharge for suspended sediment concentration estimation. Statistically, both neural network models can be successfully applied for the event-based suspended sediment concentration modelling in the weir studied herein when few data are available.


2019 ◽  
Vol 16 (9) ◽  
pp. 1343-1347 ◽  
Author(s):  
Yibo Sun ◽  
Qiaolin Zeng ◽  
Bing Geng ◽  
Xinwen Lin ◽  
Bilige Sude ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document