scholarly journals Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracy

2020 ◽  
Vol 171 ◽  
pp. 115403 ◽  
Author(s):  
Junyu He ◽  
Yijun Chen ◽  
Jiaping Wu ◽  
Douglas A. Stow ◽  
George Christakos
2020 ◽  
Vol 12 (16) ◽  
pp. 2514
Author(s):  
Tongwen Li ◽  
Yuan Wang ◽  
Qiangqiang Yuan

Nitrogen dioxide (NO2) is an essential air pollutant related to adverse health effects. A space-time neural network model is developed for the estimation of ground-level NO2 in this study by integrating ground NO2 station measurements, satellite NO2 products, simulation data, and other auxiliary data. Specifically, a geographically and temporally weighted generalized regression neural network (GTW-GRNN) model is used with the advantage to consider the spatiotemporal variations of the relationship between NO2 and influencing factors in a nonlinear neural network framework. The case study across the Wuhan urban agglomeration (WUA), China, indicates that the GTW-GRNN model outperforms the widely used geographically and temporally weighted regression (GTWR), with the site-based cross-validation R2 value increasing by 0.08 (from 0.61 to 0.69). Besides, the comparison between the GTW-GRNN and original global GRNN models shows that considering the spatiotemporal variations in GRNN modeling can boost estimation accuracy. All these results demonstrate that the GTW-GRNN based NO2 estimation framework will be of great use for remote sensing of ground-level NO2 concentrations.


2019 ◽  
Vol 11 (15) ◽  
pp. 1764 ◽  
Author(s):  
Igor Ogashawara ◽  
Lin Li

Monitoring cyanobacteria is an essential step for the development of environmental and public health policies. While traditional monitoring methods rely on collection and analysis of water samples, remote sensing techniques have been used to capture their spatial and temporal dynamics. Remote detection of cyanobacteria is commonly based on the absorption of phycocyanin (PC), a unique pigment of freshwater cyanobacteria, at 620 nm. However, other photosynthetic pigments can contribute to absorption at 620 nm, interfering with the remote estimation of PC. To surpass this issue, we present a remote sensing algorithm in which the contribution of chlorophyll-a (chl-a) absorption at 620 nm is removed. To do this, we determine the PC contribution to the absorption at 665 nm and chl-a contribution to the absorption at 620 nm based on empirical relationships established using chl-a and PC standards. The proposed algorithm was compared with semi-empirical and semi-analytical remote sensing algorithms for proximal and simulated satellite sensor datasets from three central Indiana reservoirs (total of 544 sampling points). The proposed algorithm outperformed semi-empirical algorithms with root mean square error (RMSE) lower than 25 µg/L for the three analyzed reservoirs and showed similar performance to a semi-analytical algorithm. However, the proposed remote sensing algorithm has a simple mathematical structure, it can be applied at ease and make it possible to improve spectral estimation of phycocyanin from space. Additionally, the proposed showed little influence from the package effect of cyanobacteria cells.


2017 ◽  
Vol 920 (2) ◽  
pp. 57-60
Author(s):  
F.E. Guliyeva

The study of results of relevant works on remote sensing of forests has shown that the known methods of remote estimation of forest cuts and growth don’t allow to calculate the objective average value of forests cut volume during the fixed time period. The existing mathematical estimates are not monotonous and make it possible to estimate primitively the scale of cutting by computing the ratio of data in two fixed time points. In the article the extreme properties of the considered estimates for deforestation and reforestation models are researched. The extreme features of integrated averaged values of given estimates upon limitations applied on variables, characterizing the deforestation and reforestation processes are studied. The integrated parameter, making it possible to calculate the averaged value of estimates of forest cutting, computed for all fixed time period with a fixed step is suggested. It is shown mathematically that the given estimate has a monotonous feature in regard of value of given time interval and make it possible to evaluate objectively the scales of forest cutting.


2021 ◽  
Vol 262 ◽  
pp. 112482
Author(s):  
Remika S. Gupana ◽  
Daniel Odermatt ◽  
Ilaria Cesana ◽  
Claudia Giardino ◽  
Ladislav Nedbal ◽  
...  

Author(s):  
Yuequn Lai ◽  
Jing Zhang ◽  
Yongyu Song ◽  
Zhaoning Gong

Remote sensing retrieval is an important technology for studying water eutrophication. In this study, Guanting Reservoir with the main water supply function of Beijing was selected as the research object. Based on the measured data in 2016, 2017, and 2019, and Landsat-8 remote sensing images, the concentration and distribution of chlorophyll-a in the Guanting Reservoir were inversed. We analyzed the changes in chlorophyll-a concentration of the reservoir in Beijing and the reasons and effects. Although the concentration of chlorophyll-a in the Guanting Reservoir decreased gradually, it may still increase. The amount and stability of water storage, chlorophyll-a concentration of the supply water, and nitrogen and phosphorus concentration change are important factors affecting the chlorophyll-a concentration of the reservoir. We also found a strong correlation between the pixel values of adjacent reservoirs in the same image, so the chlorophyll-a estimation model can be applied to each other.


2018 ◽  
Vol 90 (2 suppl 1) ◽  
pp. 1987-2000 ◽  
Author(s):  
FERNANDA WATANABE ◽  
ENNER ALCÂNTARA ◽  
THANAN RODRIGUES ◽  
LUIZ ROTTA ◽  
NARIANE BERNARDO ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


Sign in / Sign up

Export Citation Format

Share Document