scholarly journals Anchor-free Convolutional Network with Dense Attention Feature Aggregation for Ship Detection in SAR Images

2020 ◽  
Vol 12 (16) ◽  
pp. 2619 ◽  
Author(s):  
Fei Gao ◽  
Yishan He ◽  
Jun Wang ◽  
Amir Hussain ◽  
Huiyu Zhou

In recent years, with the improvement of synthetic aperture radar (SAR) imaging resolution, it is urgent to develop methods with higher accuracy and faster speed for ship detection in high-resolution SAR images. Among all kinds of methods, deep-learning-based algorithms bring promising performance due to end-to-end detection and automated feature extraction. However, several challenges still exist: (1) standard deep learning detectors based on anchors have certain unsolved problems, such as tuning of anchor-related parameters, scale-variation and high computational costs. (2) SAR data is huge but the labeled data is relatively small, which may lead to overfitting in training. (3) To improve detection speed, deep learning detectors generally detect targets based on low-resolution features, which may cause missed detections for small targets. In order to address the above problems, an anchor-free convolutional network with dense attention feature aggregation is proposed in this paper. Firstly, we use a lightweight feature extractor to extract multiscale ship features. The inverted residual blocks with depth-wise separable convolution reduce the network parameters and improve the detection speed. Secondly, a novel feature aggregation scheme called dense attention feature aggregation (DAFA) is proposed to obtain a high-resolution feature map with multiscale information. By combining the multiscale features through dense connections and iterative fusions, DAFA improves the generalization performance of the network. In addition, an attention block, namely spatial and channel squeeze and excitation (SCSE) block is embedded in the upsampling process of DAFA to enhance the salient features of the target and suppress the background clutters. Third, an anchor-free detector, which is a center-point-based ship predictor (CSP), is adopted in this paper. CSP regresses the ship centers and ship sizes simultaneously on the high-resolution feature map to implement anchor-free and nonmaximum suppression (NMS)-free ship detection. The experiments on the AirSARShip-1.0 dataset demonstrate the effectiveness of our method. The results show that the proposed method outperforms several mainstream detection algorithms in both accuracy and speed.

2021 ◽  
Vol 13 (24) ◽  
pp. 5104
Author(s):  
Songlin Lei ◽  
Dongdong Lu ◽  
Xiaolan Qiu ◽  
Chibiao Ding

Deep learning has been widely used in the field of SAR ship detection. However, current SAR ship detection still faces many challenges, such as complex scenes, multiple scales, and small targets. In order to promote the solution to the above problems, this article releases a high-resolution SAR ship detection dataset which can be used for rotating frame target detection. The dataset contains six categories of ships. In total, 30 panoramic SAR tiles of the Chinese Gaofen-3 of port areas with a 1-m resolution were cropped to slices, each with 1024 × 1024 pixels. In addition, most of the images in the dataset contain nearshore areas with complex background interference. Eight state-of-the-art rotated detectors and a CFAR-based method were used to evaluate the dataset. Experimental results revealed that the complex background will have a great impact on the performance of detectors.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2929 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chao Wang ◽  
Hong Zhang

With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method.


2020 ◽  
Vol 10 (21) ◽  
pp. 7751
Author(s):  
Seong-Jae Hong ◽  
Won-Kyung Baek ◽  
Hyung-Sup Jung

Synthetic aperture radar (SAR) images have been used in many studies for ship detection because they can be captured without being affected by time and weather. In recent years, the development of deep learning techniques has facilitated studies on ship detection in SAR images using deep learning techniques. However, because the noise from SAR images can negatively affect the learning of the deep learning model, it is necessary to reduce the noise through preprocessing. In this study, deep learning vessel detection was performed using preprocessed SAR images, and the effects of the preprocessing of the images on deep learning vessel detection were compared and analyzed. Through the preprocessing of SAR images, (1) intensity images, (2) decibel images, and (3) intensity difference and texture images were generated. The M2Det object detection model was used for the deep learning process and preprocessed SAR images. After the object detection model was trained, ship detection was performed using test images. The test results are presented in terms of precision, recall, and average precision (AP), which were 93.18%, 91.11%, and 89.78% for the intensity images, respectively, 94.16%, 94.16%, and 92.34% for the decibel images, respectively, and 97.40%, 94.94%, and 95.55% for the intensity difference and texture images, respectively. From the results, it can be found that the preprocessing of the SAR images can facilitate the deep learning process and improve the ship detection performance. The results of this study are expected to contribute to the development of deep learning-based ship detection techniques in SAR images in the future.


Sign in / Sign up

Export Citation Format

Share Document