scholarly journals Construction of the Long-Term Global Surface Water Extent Dataset Based on Water-NDVI Spatio-Temporal Parameter Set

2020 ◽  
Vol 12 (17) ◽  
pp. 2675
Author(s):  
Qianqian Han ◽  
Zhenguo Niu

Inland surface water is highly dynamic, seasonally and inter-annually, limiting the representativity of the water coverage information that is usually obtained at any single date. The long-term dynamic water extent products with high spatial and temporal resolution are particularly important to analyze the surface water change but unavailable up to now. In this paper, we construct a global water Normalized Difference Vegetation Index (NDVI) spatio-temporal parameter set based on the Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI. Employing the Google Earth Engine, we construct a new Global Surface Water Extent Dataset (GSWED) with coverage from 2000 to 2018, having an eight-day temporal resolution and a spatial resolution of 250 m. The results show that: (1) the MODIS NDVI-based surface water mapping has better performance compared to other water extraction methods, such as the normalized difference water index, the modified normalized difference water index, and the OTSU (maximal between-cluster variance method). In addition, the water-NDVI spatio-temporal parameter set can be used to update surface water extent datasets after 2018 as soon as the MODIS data are updated. (2) We validated the GSWED using random water samples from the Global Surface Water (GSW) dataset and achieved an overall accuracy of 96% with a kappa coefficient of 0.9. The producer’s accuracy and user’s accuracy were 97% and 90%, respectively. The validated comparisons in four regions (Qinghai Lake, Selin Co Lake, Utah Lake, and Dead Sea) show a good consistency with a correlation value of above 0.9. (3) The maximum global water area reached 2.41 million km2 between 2000 and 2018, and the global water showed a decreasing trend with a significance of P = 0.0898. (4) Analysis of different types of water area change regions (Selin Co Lake, Urmia Lake, Aral Sea, Chiquita Lake, and Dongting Lake) showed that the GSWED can not only identify the seasonal changes of the surface water area and abrupt changes of hydrological events but also reflect the long-term trend of the water changes. In addition, GSWED has better performance in wetland areas and shallow areas. The GSWED can be used for regional studies and global studies of hydrology, biogeochemistry, and climate models.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 69
Author(s):  
Zahra Kalantari ◽  
Sonia Borja ◽  
Georgia Destouni

Spatial and temporal characteristics of surface water resources (e.g., extension, connectivity, seasonality) are key elements in water allocation, climate and hydrological regulation, ecosystem functioning, and the food-energy-water nexus. Changes in surface water area due to losses/gains to land could strongly affect these processes on different scales. Previous findings on changes in the Earth’s surface water area are contradictory. Based on water–land year classification datasets, we estimated global surface water area changes between 1985–2000 and 2001–2015. We found a net global gain in surface water of 100,454 km2, attributable to a large net gain in seasonal water (83,329 km2) and a small net gain in permanent water (17,125 km2). In general, net changes were highly heterogeneous in space, with local exceptions of clear drying and wetting trends, e.g., the Aral Sea and Quill Lakes, respectively. These findings raise multiple questions as to why seasonal water gains dominate and how different intertwined drivers (e.g., hydroclimate and human-induced water–land use changes) shape the distribution of the Earth’s surface water. Understanding these long-term changes is essential to predicting water-related pressures and prioritizing management decisions.



Author(s):  
Suwarsono Suwarsono ◽  
Fajar Yulianto ◽  
Hana Listi Fitriana ◽  
Udhi Catur Nugroho ◽  
Kusumaning Ayu Dyah Sukowati ◽  
...  

This paper describes the detection of the surface water area in Cirata dam,  upstream Citarum, using a water index derived from Sentinel-2. MSI Level 1C (MSIL1C) data from 16 November 2018 were extracted into a water index such as the NDWI (Normalized Difference Water Index) model of Gao (1996), McFeeters (1996), Roger and Kearney (2004), and Xu (2006). Water index were analyzed based on the presence of several objects (water, vegetation, soil, and built-up). The research resulted in the ability of each water index to separate water and non-water objects. The results conclude that the NDWI of McFeeters (1996) derived from Sentinel-2 MSI showed the best results in detecting the surface water area of the reservoir.



Author(s):  
B. Chandrababu Naik ◽  
B. Anuradha

Extraction of water bodies from satellite imagery has been broadly explored in the current decade. So many techniques were involved in detecting of the surface water bodies from satellite data. To detect and extracting of surface water body changes in Nagarjuna Sagar Reservoir, Andhra Pradesh from the period 1989 to 2017, were calculated using Landsat-5 TM, and Landsat-8 OLI data. Unsupervised classification and spectral water indexing methods, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Difference Water Index (NDWI), and Modified Normalized Difference Water Index (MNDWI), were used to detect and extraction of the surface water body from satellite data. Instead of all index methods, the MNDWI was performed better results. The Reservoir water area was extracted using spectral water indexing methods (NDVI, NDWI, MNDWI, and NDMI) in 1989, 1997, 2007, and 2017. The shoreline shrunk in the twenty-eight-year duration of images. The Reservoir Nagarjuna Sagar lost nearly around one-fourth of its surface water area compared to 1989. However, the Reservoir has a critical position in recent years due to changes in surface water and getting higher mud and sand. Maximum water surface area of the Reservoir will lose if such decreasing tendency follows continuously.



2021 ◽  

<p>The study calculated the changes in the Dead Sea surface area from 1984 to 2019. The satellite images of 1985, 1990, 2000, 2010, and 2019 were classified by applying four different methods to estimate the changes in the Dead Sea surface water area. The methods included normalized difference water index (NDWI), modified normalized differences water index (MNDWI), automated water extraction Index (AWEI), and ISO cluster unsupervised classification. The results revealed a decrease of 76.63 sq. km area that accounts for an average of 11.27% sea area. The statistical model predicted that the Dead Sea surface area will shrink by half within the next 143 years, and the sea will be completely dried by 2305 if appropriate measures are not taken by decision-makers to avoid further reduction of the surface area.</p>



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Acácio ◽  
Ralf H. E. Mullers ◽  
Aldina M. A. Franco ◽  
Frank J. Willems ◽  
Arjun Amar

AbstractAnimal movement is mainly determined by spatial and temporal changes in resource availability. For wetland specialists, the seasonal availability of surface water may be a major determinant of their movement patterns. This study is the first to examine the movements of Shoebills (Balaeniceps rex), an iconic and vulnerable bird species. Using GPS transmitters deployed on six immature and one adult Shoebills over a 5-year period, during which four immatures matured into adults, we analyse their home ranges and distances moved in the Bangweulu Wetlands, Zambia. We relate their movements at the start of the rainy season (October to December) to changes in Normalized Difference Water Index (NDWI), a proxy for surface water. We show that Shoebills stay in the Bangweulu Wetlands all year round, moving less than 3 km per day on 81% of days. However, average annual home ranges were large, with high individual variability, but were similar between age classes. Immature and adult Shoebills responded differently to changes in surface water; sites that adults abandoned became drier, while sites abandoned by immatures became wetter. However, there were no differences in NDWI of areas used by Shoebills before abandonment and newly selected sites, suggesting that Shoebills select areas with similar surface water. We hypothesise that the different responses to changes in surface water by immature and adult Shoebills are related to age-specific optimal foraging conditions and fishing techniques. Our study highlights the need to understand the movements of Shoebills throughout their life cycle to design successful conservation actions for this emblematic, yet poorly known, species.



2018 ◽  
Vol 63 ◽  
pp. 00017
Author(s):  
Michał Lupa ◽  
Katarzyna Adamek ◽  
Renata Stypień ◽  
Wojciech Sarlej

The study examines how LANDSAT images can be used to monitor inland surface water quality effectively by using correlations between various indicators. Wigry lake (area 21.7 km2) was selected for the study as an example. The study uses images acquired in the years 1990–2016. Analysis was performed on data from 35 months and seven water condition indicators were analyzed: turbidity, Secchi disc depth, Dissolved Organic Material (DOM), chlorophyll-a, Modified Normalized Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI). The analysis of results also took into consideration the main relationships described by the water circulation cycle. Based on the analysis of all indicators, clear trends describing a systematic improvement of water quality in Lake Wigry were observed.



2020 ◽  
Vol 12 (24) ◽  
pp. 4098
Author(s):  
Weixiao Han ◽  
Chunlin Huang ◽  
Hongtao Duan ◽  
Juan Gu ◽  
Jinliang Hou

Lake phenology is essential for understanding the lake freeze-thaw cycle effects on terrestrial hydrological processes. The Qinghai-Tibetan Plateau (QTP) has the most extensive ice reserve outside of the Arctic and Antarctic poles and is a sensitive indicator of global climate changes. Qinghai Lake, the largest lake in the QTP, plays a critical role in climate change. The freeze-thaw cycles of lakes were studied using daily Moderate Resolution Imaging Spectroradiometer (MODIS) data ranging from 2000–2018 in the Google Earth Engine (GEE) platform. Surface water/ice area, coverage, critical dates, surface water, and ice cover duration were extracted. Random forest (RF) was applied with a classifier accuracy of 0.9965 and a validation accuracy of 0.8072. Compared with six common water indexes (tasseled cap wetness (TCW), normalized difference water index (NDWI), modified normalized difference water index (MNDWI), automated water extraction index (AWEI), water index 2015 (WI2015) and multiband water index (MBWI)) and ice threshold value methods, the critical freeze-up start (FUS), freeze-up end (FUE), break-up start (BUS), and break-up end (BUE) dates were extracted by RF and validated by visual interpretation. The results showed an R2 of 0.99, RMSE of 3.81 days, FUS and BUS overestimations of 2.50 days, and FUE and BUE underestimations of 0.85 days. RF performed well for lake freeze-thaw cycles. From 2000 to 2018, the FUS and FUE dates were delayed by 11.21 and 8.21 days, respectively, and the BUS and BUE dates were 8.59 and 1.26 days early, respectively. Two novel key indicators, namely date of the first negative land surface temperature (DFNLST) and date of the first positive land surface temperature (DFPLST), were proposed to comprehensively delineate lake phenology: DFNLST was approximately 37 days before FUS, and DFPLST was approximately 20 days before BUS, revealing that the first negative and first positive land surface temperatures occur increasingly earlier.



Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 4 ◽  
Author(s):  
Xiaoai Dai ◽  
Xingping Yang ◽  
Meilian Wang ◽  
Yu Gao ◽  
Senhao Liu ◽  
...  

The widely distributed lakes, as one of the major components of the inland water system, are the primary available freshwater resources on the earth and are sensitive to accelerated climate change and extensive human activities. Lakes play an important role in the terrestrial water cycle and biogeochemical cycle and substantially influence the health of humans living in the surrounding areas. Given the importance of lakes in the ecosystem, long-term monitoring of dynamic changes has important theoretical and practical significance. Here, we extracted water body information and monitored the long-term dynamics of Bosten Lake, which is the largest inland lake in China. We quantified the meteorological factors of the study area from the observation data of meteorological stations between 1988 and 2018. The characteristics of climate change and its correlation with the change of area in the Bosten Lake Basin in the past 30 years were analyzed. The major contributions of this study are as follows: (1) The initial water body was segmented based on the water index model Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) with a pre-assigned threshold value. The results were evaluated with the area extracted through artificial visual interpretation. Then we conducted mathematical morphology operators, opening and closing operations, and median filter to eliminate noise to ensure the accuracy of water body information extraction from the Bosten Lake. A long-term water surface area database of the Bosten Lake was established from high-resolution remote sensing images during 1988–2018. (2) Due to the seasonal difference of snow, ice content, and other objects on images, the areadynamics of Bosten Lake in the recent 30 years were analyzed separately in dry season and rainy season. The water surface area of Bosten Lake showed large inter-annual variations between 1988–2018. (3) Based on the assumption that climatic change has more direct effects on lake than human activities, six meteorological factors were selected to analyze the impacts of climate change on the annual mean lake surface area. The result indicated that in the past 30 years, climate conditions in the Bosten Lake Basin fluctuated greatly. We conducted correlations analysis between the areal dynamics of the Bosten Lake and the meteorological factors. Here, the annual average evaporation had the highest correlation with the areal dynamics of Bosten Lake followed by air temperature, precipitation, sunshine hours, and relative humidity, while the annual average wind speed had the weakest correlation.



Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3010 ◽  
Author(s):  
Ruimeng Wang ◽  
Haoming Xia ◽  
Yaochen Qin ◽  
Wenhui Niu ◽  
Li Pan ◽  
...  

The spatio-temporal change of the surface water is very important to agricultural, economic, and social development in the Hetao Plain, as well as the structure and function of the ecosystem. To understand the long-term changes of the surface water area in the Hetao Plain, we used all available Landsat images (7534 scenes) and adopted the modified Normalized Difference Water Index (mNDWI), Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI) to map the open-surface water from 1989 to 2019 in the Google Earth Engine (GEE) cloud platform. We further analyzed precipitation, temperature, and irrigated area, revealing the impact of climate change and human activities on long-term surface water changes. The results show the following. (1) In the last 31 years, the maximum, seasonal, and annual average water body area values in the Hetao Plain have exhibited a downward trend. Meanwhile, the number of maximum, seasonal, and permanent water bodies displayed a significant upward trend. (2) The variation of the surface water area in the Hetao Plain is mainly affected by the maximum water body area, while the variation of the water body number is mainly affected by the number of minimum water bodies. (3) Precipitation has statistically significant positive effects on the water body area and water body number, which has statistically significant negative effects with temperature and irrigation. The findings of this study can be used to help the policy-makers and farmers understand changing water resources and its driving mechanism and provide a reference for water resources management, agricultural irrigation, and ecological protection.



Sign in / Sign up

Export Citation Format

Share Document