scholarly journals Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment

2020 ◽  
Vol 12 (18) ◽  
pp. 2961 ◽  
Author(s):  
Riccardo Lanari ◽  
Manuela Bonano ◽  
Francesco Casu ◽  
Claudio De Luca ◽  
Michele Manunta ◽  
...  

We present in this work an advanced processing pipeline for continental scale differential synthetic aperture radar (DInSAR) deformation time series generation, which is based on the parallel small baseline subset (P-SBAS) approach and on the joint exploitation of Sentinel-1 (S-1) interferometric wide swath (IWS) SAR data, continuous global navigation satellite system (GNSS) position time-series, and cloud computing (CC) resources. We first briefly describe the basic rationale of the adopted P-SBAS processing approach, tailored to deal with S-1 IWS SAR data and to be implemented in a CC environment, highlighting the innovative solutions that have been introduced in the processing chain we present. They mainly consist in a series of procedures that properly exploit the available GNSS time series with the aim of identifying and filtering out possible residual atmospheric artifacts that may affect the DInSAR measurements. Moreover, significant efforts have been carried out to improve the P-SBAS processing pipeline automation and robustness, which represent crucial issues for interferometric continental scale analysis. Then, a massive experimental analysis is presented. In this case, we exploit: (i) the whole archive of S-1 IWS SAR images acquired over a large portion of Europe, from descending orbits, (ii) the continuous GNSS position time series provided by the Nevada Geodetic Laboratory at the University of Nevada, Reno, USA (UNR-NGL) available for the investigated area, and (iii) the ONDA platform, one of the Copernicus Data and Information Access Services (DIAS). The achieved results demonstrate the capability of the proposed solution to successfully retrieve the DInSAR time series relevant to such a huge area, opening new scenarios for the analysis and interpretation of these ground deformation measurements.

Author(s):  
Riccardo Lanari ◽  
Manuela Bonano ◽  
Sabatino Buonanno ◽  
Francesco Casu ◽  
Claudio De Luca ◽  
...  

<p>The Sentinel-1 constellation of the Copernicus Program already represents a big revolution within the Earth Observation (EO) scenario. This result is mainly due to the capability of this constellation to acquire huge volumes of SAR data all over the globe, with a wide spatial coverage, a short revisit time (12 or 6 days in the case of one or two operating satellites, respectively), and a free and open access data policy. In particular, the availability of such a large amount of SAR data acquired through the TOPS mode, characterized by a short “orbital tube” (with a 200m nominal diameter) and a specific design for ensuring differential SAR interferometry (DInSAR) applications, has opened the possibility to investigate Earth surface deformation phenomena at unprecedented spatial scale and with a high temporal rate.</p><p> </p><p>Among several advanced DInSAR algorithms, a widely used approach is the Small BAseline Subset (SBAS) technique, which has already proven its effectiveness to investigate surface displacements with centimeter- to millimeter-level accuracy in different scenarios. Moreover, a parallel algorithmic solution for the SBAS approach, referred to as Parallel Small BAseline Subset (P-SBAS), has been recently developed. This approach permits to generate, in an automatic and unsupervised way, advanced DInSAR products by taking full benefit from parallel computing architectures, such as cluster, grid and, above all, cloud computing infrastructures.</p><p> </p><p>In this work we present the results of a DInSAR experiment, based on the P-SBAS approach, carried out at the European scale. In particular, we exploited the entire available Sentinel-1 dataset collected through the TOPS acquisition mode between March 2015 and September 2018 from descending orbits over large part of Europe. Moreover, the overall analysis wasbcarried out by using the Copernicus Data and Information Access Services (DIAS) and, in particular, those provided by the ONDA DIAS platform, which was selected through a public tender. This activity, carried out as stress test of the EPOSAR service included in the Satellite Data Thematic Core Service of the EPOS infrastructure, permitted to investigate the DIAS capacity to operationally serve systematic and automatic DInSAR processing services, such as the one based on the P-SBAS approach.</p><p> </p><p>Our experiment was successfully completed, allowing the retrieval of the deformation time-series of the overall investigated area with the final products having the main characteristics summarized in the following:</p><p> </p><ul><li>Exploited Sentinel-1 data: ~72.000</li> <li>Covered Area: ~4.500.000 km<sup>2</sup></li> <li>Coherent (multilook) SAR pixels: ~120.000.000</li> <li>Final products pixel dimension: ~80 m</li> <li>Time elapsed: ~6 months</li> </ul><p> </p><p>The presented discussion will highlight the main pros and cons of the exploited solution for such wide area DInSAR experiment. Moreover, the analysis of the achieved results will also show the high quality of the retrieved DInSAR results, that can be of interest for the Solid Earth scientific community, and the potentially positive impact of the presented solution for what concerns the future development of the European Ground Motion Service.</p><p>This work is supported by: the 2019-2021 IREA-CNR and Italian Civil Protection Department agreement; the H2020 EPOS-SP project (GA 871121); the I-AMICA (PONa3_00363) project; and the IREA-CNR/DGSUNMIG agreement.</p>


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2298 ◽  
Author(s):  
Wudong Li ◽  
Weiping Jiang ◽  
Zhao Li ◽  
Hua Chen ◽  
Qusen Chen ◽  
...  

Removal of the common mode error (CME) is very important for the investigation of global navigation satellite systems’ (GNSS) error and the estimation of an accurate GNSS velocity field for geodynamic applications. The commonly used spatiotemporal filtering methods normally process the evenly spaced time series without missing data. In this article, we present the variational Bayesian principal component analysis (VBPCA) to estimate and extract CME from the incomplete GNSS position time series. The VBPCA method can naturally handle missing data in the Bayesian framework and utilizes the variational expectation-maximization iterative algorithm to search each principal subspace. Moreover, it could automatically select the optimal number of principal components for data reconstruction and avoid the overfitting problem. To evaluate the performance of the VBPCA algorithm for extracting CME, 44 continuous GNSS stations located in Southern California were selected. Compared to previous approaches, VBPCA could achieve better performance with lower CME relative errors when more missing data exists. Since the first principal component (PC) extracted by VBPCA is remarkably larger than the other components, and its corresponding spatial response presents nearly uniform distribution, we only use the first PC and its eigenvector to reconstruct the CME for each station. After filtering out CME, the interstation correlation coefficients are significantly reduced from 0.43, 0.46, and 0.38 to 0.11, 0.10, and 0.08, for the north, east, and up (NEU) components, respectively. The root mean square (RMS) values of the residual time series and the colored noise amplitudes for the NEU components are also greatly suppressed, with average reductions of 27.11%, 28.15%, and 23.28% for the former, and 49.90%, 54.56%, and 49.75% for the latter. Moreover, the velocity estimates are more reliable and precise after removing CME, with average uncertainty reductions of 51.95%, 57.31%, and 49.92% for the NEU components, respectively. All these results indicate that the VBPCA method is an alternative and efficient way to extract CME from regional GNSS position time series in the presence of missing data. Further work is still required to consider the effect of formal errors on the CME extraction during the VBPCA implementation.


2020 ◽  
Vol 12 (18) ◽  
pp. 2971
Author(s):  
Jingzhao Ding ◽  
Qing Zhao ◽  
Maochuan Tang ◽  
Fabiana Calò ◽  
Virginia Zamparelli ◽  
...  

In this work, we study ground deformation of ocean-reclaimed platforms as retrieved from interferometric synthetic aperture radar (InSAR) analyses. We investigate, in particular, the suitability and accuracy of some time-dependent models used to characterize and foresee the present and future evolution of ground deformation of the coastal lands. Previous investigations, carried out by the authors of this paper and other scholars, related to the zone of the ocean-reclaimed lands of Shanghai, have already shown that ocean-reclaimed lands are subject to subside (i.e., the ground is subject to settling down due to soil consolidation and compression), and the temporal evolution of that deformation follows a certain predictable model. Specifically, two time-gapped SAR datasets composed of the images collected by the ENVISAT ASAR (ENV) from 2007 to 2010 and the COSMO-SkyMed (CSK) sensors, available from 2013 to 2016, were used to generate long-term ground displacement time-series using a proper time-dependent geotechnical model. In this work, we use a third SAR data set consisting of Radarsat-2 (RST-2) acquisitions collected from 2012 to 2016 to further corroborate the validity of that model. As a result, we verified with the new RST-2 data, partially covering the gap between the ENV and CSK acquisitions, that the adopted model fits the data and that the model is suitable to perform future projections. Furthermore, we extended these analyses to the area of Pearl River Delta (PRD) and the city of Shenzhen, China. Our study aims to investigate the suitability of different time-dependent ground deformation models relying on the different geophysical conditions in the two areas of Shanghai and Shenzhen, China. To this aim, three sets of SAR data, collected by the ENV platform (from both ascending and descending orbits) and the Sentinel-1A (S1A) sensor (on ascending orbits), were used to obtain the ground displacement time-series of the Shenzhen city and its surrounding region. Multi-orbit InSAR data products were also combined to discriminate the up–down (subsidence) ground deformation time-series of the coherent points, which are then used to estimate the parameters of the models adopted to foresee the future evolution of the land-reclaimed ground consolidation procedure. The exploitation of the obtained geospatial data and products are helpful for the continuous monitoring of coastal environments and the evaluation of the socio-economical impacts of human activities and global climate change.


2017 ◽  
Vol 92 (8) ◽  
pp. 905-922 ◽  
Author(s):  
Yanyan Li ◽  
Caijun Xu ◽  
Lei Yi ◽  
Rongxin Fang

2021 ◽  
Author(s):  
Shambo Bhattacharjee ◽  
Alvaro Santamaría-Gómez

<p>Long GNSS position time series contain offsets typically at rates between 1 and 3 offsets per decade. We may classify the offsets whether their epoch is precisely known, from GNSS station log files or Earthquake databases, or unknown. Very often, GNSS position time series contain offsets for which the epoch is not known a priori and, therefore, an offset detection/removal operation needs to be done in order to produce continuous position time series needed for many applications in geodesy and geophysics. A further classification of the offsets corresponds to those having a physical origin related to the instantaneous displacement of the GNSS antenna phase center (from Earthquakes, antenna changes or even changes of the environment of the antenna) and those spurious originated from the offset detection method being used (manual/supervised or automatic/unsupervised). Offsets due to changes of the antenna and its environment must be avoided by the station operators as much as possible. Spurious offsets due to the detection method must be avoided by the time series analyst and are the focus of this work.</p><p><br>Even if manual offset detection by expert analysis is likely to perform better, automatic offset detection algorithms are extremely useful when using massive (thousands) GNSS time series sets. Change point detection and cluster analysis algorithms can be used for detecting offsets in a GNSS time series data and R offers a number of libraries related to performing these two. For example, the “Bayesian Analysis of Change Point Problems” or the “bcp” helps to detect change points in a time series data. Similarly, the “dtwclust” (Dynamic Time Warping algorithm) is used for the time series cluster analysis. Our objective is to assess various open-source R libraries for the automatic offset detection.</p>


Sign in / Sign up

Export Citation Format

Share Document