scholarly journals An Accurate Vegetation and Non-Vegetation Differentiation Approach Based on Land Cover Classification

2020 ◽  
Vol 12 (23) ◽  
pp. 3880
Author(s):  
Chiman Kwan ◽  
David Gribben ◽  
Bulent Ayhan ◽  
Jiang Li ◽  
Sergio Bernabe ◽  
...  

Accurate vegetation detection is important for many applications, such as crop yield estimation, land cover land use monitoring, urban growth monitoring, drought monitoring, etc. Popular conventional approaches to vegetation detection incorporate the normalized difference vegetation index (NDVI), which uses the red and near infrared (NIR) bands, and enhanced vegetation index (EVI), which uses red, NIR, and the blue bands. Although NDVI and EVI are efficient, their accuracies still have room for further improvement. In this paper, we propose a new approach to vegetation detection based on land cover classification. That is, we first perform an accurate classification of 15 or more land cover types. The land covers such as grass, shrub, and trees are then grouped into vegetation and other land cover types such as roads, buildings, etc. are grouped into non-vegetation. Similar to NDVI and EVI, only RGB and NIR bands are needed in our proposed approach. If Laser imaging, Detection, and Ranging (LiDAR) data are available, our approach can also incorporate LiDAR in the detection process. Results using a well-known dataset demonstrated that the proposed approach is feasible and achieves more accurate vegetation detection than both NDVI and EVI. In particular, a Support Vector Machine (SVM) approach performed 6% better than NDVI and 50% better than EVI in terms of overall accuracy (OA).

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


2021 ◽  
Vol 12 (4) ◽  
pp. 22-39
Author(s):  
Keerti Kulkarni ◽  
Vijaya P. A.

The need for efficient planning of the land is exponentially increasing because of the unplanned human activities, especially in the urban areas. A land cover map gives a detailed report on temporal dynamics of a given geographical area. The land cover map can be obtained by using machine learning classifiers on the raw satellite images. In this work, the authors propose a combination method for the land cover classification. This method combines the outputs of two classifiers, namely, random forests (RF) and support vector machines (SVM), using Dempster-Shafer combination theory (DSCT), also called the theory of evidence. This combination is possible because of the inherent uncertainties associated with the output of each classifier. The experimental results indicate an improved accuracy (89.6%, kappa = 0.86 as versus accuracy of RF [87.31%, kappa = 0.83] and SVM [82.144%, kappa = 0.76]). The results are validated using the normalized difference vegetation index (NDVI), and the overall accuracy (OA) has been used as a comparison basis.


2021 ◽  
Vol 13 (5) ◽  
pp. 902
Author(s):  
Yunjun Yao ◽  
Zhenhua Di ◽  
Zijing Xie ◽  
Zhiqiang Xiao ◽  
Kun Jia ◽  
...  

An operational and accurate model for estimating global or regional terrestrial latent heat of evapotranspiration (ET) across different land-cover types from satellite data is crucial. Here, a simplified Priestley–Taylor (SPT) model was developed without surface net radiation (Rn) by combining incident shortwave radiation (Rs), satellite vegetation index, and air relative humidity (RH). Ground-measured ET for 2000–2009 collected by 100 global FLUXNET eddy covariance (EC) sites was used to calibrate and evaluate the SPT model. A series of cross-validations demonstrated the reasonable performance of the SPT model to estimate seasonal and spatial ET variability. The coefficients of determination (R2) of the estimated versus observed daily (monthly) ET ranged from 0.42 (0.58) (p < 0.01) at shrubland (SHR) flux sites to 0.81 (0.86) (p < 0.01) at evergreen broadleaf forest (EBF) flux sites. The SPT model was applied to estimate agricultural ET at high spatial resolution (16 m) from Chinese Gaofen (GF)-1 data and monitor long-term (1982–2018) ET variations in the Three-River Headwaters Region (TRHR) of mainland China using the Global LAnd-Surface Satellite (GLASS) normalized difference vegetation index (NDVI) product. The proposed SPT model without Rn provides an alternative model for estimating regional terrestrial ET across different land-cover types.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


2019 ◽  
Vol 85 (11) ◽  
pp. 799-813
Author(s):  
Zhixin Qi ◽  
Anthony Gar-On Yeh ◽  
Xia Li

Aiming at steering the selection of optimal combinations of polarimetric SAR (PolSAR) frequency bands for different land cover classification schemes, this study investigates the land cover classification capabilities of all the possible combinations of L-band ALOS PALSAR fully PolSAR data, C-band RADARSAT-2 fully PolSAR data, and X-band TerraSAR-X HH SAR data. A method that integrates polarimetric decomposition, object-based image analysis, decision tree algorithms, and support vector machines is used for the classification. Polarimetric decomposition theorems are used to interpret the scattering mechanisms at the different frequency bands to reveal the effect mechanisms of PolSAR frequency variation on the classification capability. This study finds that (1) X-band HH SAR is not necessary for classifying the land cover types involved in this study when C- or L-band fully PolSAR are used; (2) C-band fully PolSAR alone is adequate for classifying primitive land cover types, namely, water, bare land, vegetation, and built-up areas; and (3) L-band fully PolSAR alone is adequate for distinguishing between various vegetation types, such as crops, banana trees, and forests.


2019 ◽  
Vol 11 (12) ◽  
pp. 1434 ◽  
Author(s):  
Muhammad Danish Siddiqui ◽  
Arjumand Z. Zaidi ◽  
Muhammad Abdullah

Seaweed is a valuable coastal resource for its use in food, cosmetics, and other items. This study proposed new remote sensing based seaweed enhancing index (SEI) using spectral bands of near-infrared (NIR) and shortwave-infrared (SWIR) of Landsat 8 satellite data. Nine Landsat 8 satellite images of years 2014, 2016, and 2018 for the January, February, and March months were utilized to test the performance of SEI. The seaweed patches in the coastal waters of Karachi, Pakistan were mapped using the SEI, normalized difference vegetation index (NDVI), and floating algae index (FAI). Seaweed locations recorded during a field survey on February 26, 2014, were used to determine threshold values for all three indices. The accuracy of SEI was compared with NDVI while placing FAI as the reference index. The accuracy of NDVI and SEI were assessed by matching their spatial extent of seaweed cover with FAI enhanced seaweed area. SEI images of January 2016, February 2018, and March 2018 enhanced less than 50 percent of the corresponding FAI total seaweed areas. However, on these dates the NDVI performed very well, matching more than 95 percent of FAI seaweed coverage. Except for these three times, the performance of SEI in the remaining six images was either similar to NDVI or even better than NDVI. SEI enhanced 99 percent of FAI seaweed cover on January 2018 image. Overall, seaweed area not covered by FAI was greater in SEI than NDVI in almost all images, which needs to be further explored in future studies by collecting extensive field information to validate SEI mapped additional area beyond the extent of FAI seaweed cover. Based on these results, in the majority of the satellite temporal images selected for this study, the performance of the newly proposed index—SEI, was found either better than or similar to NDVI.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3456 ◽  
Author(s):  
Herrero ◽  
Southworth ◽  
Bunting ◽  
Kohlhaas ◽  
Child

Southern African savannas are an important dryland ecosystem, as they account for up to 54% of the landscape, support a rich variety of biodiversity, and are areas of key landscape change. This paper aims to address the challenges of studying this highly gradient landscape with a grass–shrub–tree continuum. This study takes place in South Luangwa National Park (SLNP) in eastern Zambia. Discretely classifying land cover in savannas is notoriously difficult because vegetation species and structural groups may be very similar, giving off nearly indistinguishable spectral signatures. A support vector machine classification was tested and it produced an accuracy of only 34.48%. Therefore, we took a novel continuous approach in evaluating this change by coupling in situ data with Landsat-level normalized difference vegetation index data (NDVI, as a proxy for vegetation abundance) and blackbody surface temperature (BBST) data into a rule-based classification for November 2015 (wet season) that was 79.31% accurate. The resultant rule-based classification was used to extract mean Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI values by season over time from 2000 to 2016. This showed a distinct separation between each of the classes consistently over time, with woodland having the highest NDVI, followed by shrubland and then grassland, but an overall decrease in NDVI over time in all three classes. These changes may be due to a combination of precipitation, herbivory, fire, and humans. This study highlights the usefulness of a continuous time-series-based approach, which specifically integrates surface temperature and vegetation abundance-based NDVI data into a study of land cover and vegetation health for savanna landscapes, which will be useful for park managers and conservationists globally.


2018 ◽  
Author(s):  
Yu Oishi ◽  
Haruma Ishida ◽  
Takashi Y. Nakajima ◽  
Ryosuke Nakamura ◽  
Tsuneo Matsunaga

Abstract. The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the thermal and near-infrared sensor for carbon observation (TANSO)-Fourier transform spectrometer (FTS) and TANSO-cloud and aerosol imager (CAI). The presence of clouds in the instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gases concentrations. This is a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support vector machine (CLAUDIA3) was developed and presented in another paper. Visual inspection can use the locally optimized standards for judging, although CLAUDIA1 and CLAUDIA3 use common thresholds all over the world. Thus, the accuracy of visual inspection is better than that of these algorithms in most regions, with the exception of snow and ice covered surfaces, where there is not enough spectral contrast to distinguish cloud. For the reason visual inspection can be used for the truth metric for the verification exercise. In this study, we compared between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing the both of CLAUDIA1-CAI and CLAUDIA3-CAI against visual inspection of the same CAI images in tropical rainforests. Comparative results between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had tendency to identify bright surface and optically thin clouds, however, misjudge the edges of clouds as compared with CLAUDIA1-CAI. The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here.


Author(s):  
M. Gašparović ◽  
D. Medak ◽  
I. Pilaš ◽  
L. Jurjević ◽  
I. Balenović

<p><strong>Abstract.</strong> Different spatial resolutions satellite imagery with global almost daily revisit time provide valuable information about the earth surface in a short time. Based on the remote sensing methods satellite imagery can have different applications like environmental development, urban monitoring, etc. For accurate vegetation detection and monitoring, especially in urban areas, spectral characteristics, as well as the spatial resolution of satellite imagery is important. In this research, 10-m and 20-m Sentinel-2 and 3.7-m PlanetScope satellite imagery were used. Although in nowadays research Sentinel-2 satellite imagery is often used for land-cover classification or vegetation detection and monitoring, we decided to test a fusion of Sentinel-2 imagery with PlanetScope because of its higher spatial resolution. The main goal of this research is a new method for Sentinel-2 and PlanetScope imagery fusion. The fusion method validation was provided based on the land-cover classification accuracy. Three land-cover classifications were made based on the Sentinel-2, PlanetScope and fused imagery. As expected, results show better accuracy for PS and fused imagery than the Sentinel-2 imagery. PlanetScope and fused imagery have almost the same accuracy. For the vegetation monitoring testing, the Normalized Difference Vegetation Index (NDVI) from Sentinel-2 and fused imagery was calculated and mutually compared. In this research, all methods and tests, image fusion and satellite imagery classification were made in the free and open source programs. The method developed and presented in this paper can easily be applied to other sciences, such as urbanism, forestry, agronomy, ecology and geology.</p>


Sign in / Sign up

Export Citation Format

Share Document