scholarly journals A Rapid and High-Precision Mountain Vertex Extraction Method Based on Hotspot Analysis Clustering and Improved Eight-Connected Extraction Algorithms for Digital Elevation Models

2020 ◽  
Vol 13 (1) ◽  
pp. 81
Author(s):  
Zhenqi Zheng ◽  
Xiongwu Xiao ◽  
Zhi-Chao Zhong ◽  
Yufu Zang ◽  
Nan Yang ◽  
...  

Digital Elevation Model (DEM)-based mountain vertex extraction is one of the most useful DEM applications, providing important information to properly characterize topographic features. Current vertex-extraction techniques have considerable limitations, such as yielding low-accuracy results and generating false mountain vertices. To overcome these limitations, a new approach is proposed that combines Hotspot Analysis Clustering and the Improved Eight-Connected Extraction algorithms that would quickly and accurately provide the location and elevation of mountain vertices. The use of the elevation-based Hotspot Analysis Clustering Algorithm allows the fast partitioning of the mountain vertex area, which significantly reduces data and considerably improves the efficiency of mountain vertex extraction. The algorithm also minimizes false mountain vertices, which can be problematic in valleys, ridges, and other rugged terrains. The Eight-Connected Extraction Algorithm also hastens the precise determination of vertex location and elevation, providing a better balance between accuracy and efficiency in vertex extraction. The proposed approach was used and tested on seven different datasets and was compared against traditional vertex extraction methods. The results of the quantitative evaluation show that the proposed approach yielded higher efficiency, considerably minimized the occurrence of invalid points, and generated higher vertex extraction accuracy compared to other traditional methods.

2011 ◽  
Vol 8 (5) ◽  
pp. 8865-8901
Author(s):  
P. Noel ◽  
A. N. Rousseau ◽  
C. Paniconi

Abstract. Subdivision of catchment into appropriate hydrological units is essential to represent rainfall-runoff processes in hydrological modelling. The commonest units used for this purpose are hillslopes (e.g. Fan and Bras, 1998; Troch et al., 2003). Hillslope width functions can therefore be utilised as one-dimensional representation of three-dimensional landscapes by introducing profile curvatures and plan shapes. An algorithm was developed to delineate and extract hillslopes and hillslope width functions by introducing a new approach to calculate an average profile curvature and plan shape. This allows the algorithm to be independent of digital elevation model resolution and to associate hillslopes to nine elementary landscapes according to Dikau (1989). This algortihm was tested on two flat and steep catchments of the province of Quebec, Canada. Results showed great area coverage for hillslope width function over individual hillslopes and entire watershed.


2021 ◽  
Vol 13 (11) ◽  
pp. 2069
Author(s):  
M. V. Alba-Fernández ◽  
F. J. Ariza-López ◽  
M. D. Jiménez-Gamero

The usefulness of the parameters (e.g., slope, aspect) derived from a Digital Elevation Model (DEM) is limited by its accuracy. In this paper, a thematic-like quality control (class-based) of aspect and slope classes is proposed. A product can be compared against a reference dataset, which provides the quality requirements to be achieved, by comparing the product proportions of each class with those of the reference set. If a distance between the product proportions and the reference proportions is smaller than a small enough positive tolerance, which is fixed by the user, it will be considered that the degree of similarity between the product and the reference set is acceptable, and hence that its quality meets the requirements. A formal statistical procedure, based on a hypothesis test, is developed and its performance is analyzed using simulated data. It uses the Hellinger distance between the proportions. The application to the slope and aspect is illustrated using data derived from a 2×2 m DEM (reference) and 5×5 m DEM in Allo (province of Navarra, Spain).


2020 ◽  
Vol 13 (2) ◽  
pp. 713
Author(s):  
Danilo Da Silva Dutra ◽  
André Ricardo Furlan ◽  
Luís Eduardo De Souza Robaina

O relevo é a base onde todas as populações vivem e desenvolvem suas atividades, derivando dessa relação vantagens e desvantagens, daí a importância de conhecê-lo através do estudo de suas diferentes formas e elementos. Nesse contexto insere-se a importância de metodologias para o seu estudo, sendo que atualmente vivencia-se a expressividade de dados disponíveis para aplicação de geoprocessamento. A partir das geotecnologias pode-se empreender diversas análises sobre o relevo, destacando-se nesse contexto, a proposta dos geomorphons a qual foi aplicada na bacia hidrográfica do arroio Pantanoso. O objetivo da pesquisa é a identificação e análise dos elementos do relevo definido por geomorphons, quais sejam: 1) Planos, 2) Picos, 3) Cristas, 4) Ressaltos, 5) Crista secundária, 6) Encostas, 7) Escavado, 8) Base de encosta, 9) Vales e 10) Fosso. A determinação dos geomorphons foi a partir do processamento em ambiente SIG do Modelo Digital de Elevação (MDE) do Shuttle Radar Topograph Mission (SRTM) com resolução espacial 3 arcsec (90 metros), “L” Lookup (distância em metros) definiu-se como de 20 pixels (1800 metros) e o “T” Theresholdt (nivelamento em graus) definiu-se em 2º. Para visualização do comportamento dos elementos do relevo na área de estudo realizaram-se trabalhos de campo, o que contribuiu para evidenciar a padronização desses elementos. Os quatro elementos geomorphons mais representativos são encostas, vales, cristas e planos. Subdivision of relief elements through the proposal of geomorphons: river basin of arroio Pantanoso - Canguçu/RS A B S T R A C TRelief is the basis where all populations live and develop their activities, deriving from this relation advantages and disadvantages, hence the importance of knowing it through the study of its different forms and elements. In this context, the importance of methodologies for its study is inserted and geoprocessing application for data available for is currently experienced. From the geotechnologies one can undertake several analyzes on the relief, highlighting in this context, the proposal of the geomorphons which was applied in Pantanoso stream basin. The objective of the research is to identify and analyze the elements of the relief defined by geomorphons, namely: 1) Flats, 2) Peaks, 3) Ridges, 4) Shoulders, 5) Spurs, 6)Slopes, 7) Hollows, 8) Footslope, 9) Valley and 10) Pits. The determination of the geomorphons was based on the GIS environment of the Shuttle Radar Topograph Mission (SRTM) Digital Elevation Model (DEM) with spatial resolution 3 arcsec (90 meters), "L" Lookup (distance in meters) was defined as of 20 pixels (1800 meters) and the "T" Theresholdt (leveling in degrees) was defined in 2º. In order to visualize the behavior of the relief elements in the study area, fieldwork was carried out, which contributed to the standardization of these elements. The four most representative geomorphons, which are: Slopes, Valleys, Ridges and Flat.Keywords: SIG, Geomorphons; Canguçu/RS; relief


2019 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Ying Zhu ◽  
Xuejun Liu ◽  
Jing Zhao ◽  
Jianjun Cao ◽  
Xiaolei Wang ◽  
...  

Topographic factors such as slope and aspect are essential parameters in depicting the structure and morphology of a terrain surface. We study the effect of the number of points in the neighbourhood of a digital elevation model (DEM) interpolation method on mean slope, mean aspect, and RMSEs of slope and aspect from the interpolated DEM. As the moving least squares (MLS) method can maintain the inherent properties and other characteristics of a surface, this method is chosen for DEM interpolation. Three areas containing different types of topographic features are selected for study. Simulated data from a Gauss surface is also used for comparison. First, the impact of the number of points on the DEM root mean square error (RMSE) is analysed. The DEM RMSE in the three study areas decreases gradually with the number of points in the neighbourhood. In addition, the effect of the number of points in the neighbourhood on mean slope and mean aspect was studied across varying topographies through regression analysis. The two variables respond differently to changes in terrain. However, the RMSEs of the slope and aspect in all study areas are logarithmically related to the number of points in the neighbourhood and the values decrease uniformly as the number of points in the neighbourhood increases. With more points in the neighbourhood, the RMSEs of the slope and aspect are not sensitive to topography differences and the same trends are observed for the three studied quantities. Results for the Gauss surface are similar. Finally, this study analyses the spatial distribution of slope and aspect errors. The slope error is concentrated in ridges, valleys, steep-slope areas, and ditch edges while the aspect error is concentrated in ridges, valleys, and flat regions. With more points in the neighbourhood, the number of grid cells in which the slope error is greater than 15° is gradually reduced. With similar terrain types and data sources, if the calculation efficiency is not a concern, sufficient points in the spatial autocorrelation range should be analysed in the neighbourhood to maximize the accuracy of the slope and aspect. However, selecting between 10 and 12 points in the neighbourhood is economical.


2016 ◽  
Author(s):  
Constantijn J. Berends ◽  
Roderik S. W. van de Wal

Abstract. We present and evaluate several optimizations to a standard flood-fill algorithm in terms of computational efficiency. As an example, we determine the land/ocean-mask for a 1 km resolution digital elevation model (DEM) of North America and Greenland, a geographical area of roughly 7000 by 5000 km (roughly 35 million elements), about half of which is covered by ocean. Determining the land/ocean-mask with our improved flood-fill algorithm reduces computation time by 90 % relative to using a standard stack-based flood-fill algorithm. In another experiment, we use the bedrock elevation, ice thickness and geoid perturbation fields from the output of a coupled ice-sheet–sea-level equation model at 30,000 years before present and determine the extent of Lake Agassiz, using both the standard and improved versions of the flood-fill algorithm. We show that several optimizations to the flood-fill algorithm used for filling a depression up to a water level, that is not defined at forehand, decrease the computation time by up to 99 %. The resulting reduction in computation time allows determination of the extent and volume of depressions in a DEM over large geographical grids or repeatedly over long periods of time, where computation time might otherwise be a limiting factor.


2011 ◽  
Vol 8 (3) ◽  
pp. 4381-4425
Author(s):  
S. Gharari ◽  
F. Fenicia ◽  
M. Hrachowitz ◽  
H. H. G. Savenije

Abstract. This paper presents a new type of hydrological landscape classification based on dominant runoff mechanisms. Three landscape classes are distinguished: wetland, hillslope and plateau, corresponding to three dominant hydrological regimes: saturation excess overland flow, storage excess sub-surface flow, and deep percolation. Topography, geology and land use hold the key to identifying these landscapes. The height above the nearest drain (HAND) and the surface slope, which can be readily obtained from a digital elevation model, appear to be the dominant topographical parameters for hydrological classification. In this paper several indicators for classification are tested as well as their sensitivity to scale and sample size. It appears that the best results are obtained by the simple use of HAND and slope. The results obtained compare well with field observations and the topographical wetness index. The new approach appears to be an efficient method to "read the landscape" on the basis of which conceptual models can be developed.


2001 ◽  
Vol 240 (3-4) ◽  
pp. 225-242 ◽  
Author(s):  
R Turcotte ◽  
J.-P Fortin ◽  
A.N Rousseau ◽  
S Massicotte ◽  
J.-P Villeneuve

2017 ◽  
Author(s):  
Florin Constantin MIHAI

Landslides are common and frequent geomorphic phenomena for the plateau regions in Romania having important consequences, especially economic ones, that needs designing scientific and technical plans for landslide risk mitigation. For this, an important preliminary step is assessing and mapping the landslide susceptibility. This paper examines a plateau zone in eastern Romania providing such a map, based on the landslides inventory, the digital elevation model (DEM) and the thematic layers of several factors thought to be potential predictors of landslides occurrence: topographic features, land use, and lithology. The methodological framework is based on the analytical hierarchy process (AHP) principles and factors weights attributed based on frequency of landslides. The predictive performance of the model was assessed using the confusion matrix, the ROC (receiver operating characteristic) curve and the AUC (area under curve) parameter. The results indicate a good correspondence between the susceptibility estimated for the test samples and for the validation samples


2020 ◽  
Vol 12 (21) ◽  
pp. 3522
Author(s):  
Laurent Polidori ◽  
Mhamad El Hage

Digital elevation models (DEMs) are widely used in geoscience. The quality of a DEM is a primary requirement for many applications and is affected during the different processing steps, from the collection of elevations to the interpolation implemented for resampling, and it is locally influenced by the landcover and the terrain slope. The quality must meet the user’s requirements, which only make sense if the nominal terrain and the relevant resolution have been explicitly specified. The aim of this article is to review the main quality assessment methods, which may be separated into two approaches, namely, with or without reference data, called external and internal quality assessment, respectively. The errors and artifacts are described. The methods to detect and quantify them are reviewed and discussed. Different product levels are considered, i.e., from point cloud to grid surface model and to derived topographic features, as well as the case of global DEMs. Finally, the issue of DEM quality is considered from the producer and user perspectives.


Sign in / Sign up

Export Citation Format

Share Document