scholarly journals Unsupervised Change Detection from Remotely Sensed Images Based on Multi-Scale Visual Saliency Coarse-to-Fine Fusion

2021 ◽  
Vol 13 (4) ◽  
pp. 630
Author(s):  
Pengfei He ◽  
Xiangwei Zhao ◽  
Yuli Shi ◽  
Liping Cai

Unsupervised change detection(CD) from remotely sensed images is a fundamental challenge when the ground truth for supervised learning is not easily available. Inspired by the visual attention mechanism and multi-level sensation capacity of human vision, we proposed a novel multi-scale analysis framework based on multi-scale visual saliency coarse-to-fine fusion (MVSF) for unsupervised CD in this paper. As a preface of MVSF, we generalized the connotations of scale as four classes in the field of remote sensing (RS) covering the RS process from imaging to image processing, including intrinsic scale, observation scale, analysis scale and modeling scale. In MVSF, superpixels were considered as the primitives for analysing the difference image(DI) obtained by the change vector analysis method. Then, multi-scale saliency maps at the superpixel level were generated according to the global contrast of each superpixel. Finally, a weighted fusion strategy was designed to incorporate multi-scale saliency at a pixel level. The fusion weight for the pixel at each scale is adaptively obtained by considering the heterogeneity of the superpixel it belongs to and the spectral distance between the pixel and the superpixel. The experimental study was conducted on three bi-temporal remotely sensed image pairs, and the effectiveness of the proposed MVSF was verified qualitatively and quantitatively. The results suggest that it is not entirely true that finer scale brings better CD result, and fusing multi-scale superpixel based saliency at a pixel level obtained a higher F1 score in the three experiments. MVSF is capable of maintaining the detailed changed areas while resisting image noise in the final change map. Analysis of the scale factors in MVSF implied that the performance of MVSF is not sensitive to the manually selected scales in the MVSF framework.

Author(s):  
Xiaoqian Yuan ◽  
Chao Chen ◽  
Shan Tian ◽  
Jiandan Zhong

In order to improve the contrast of the difference image and reduce the interference of the speckle noise in the synthetic aperture radar (SAR) image, this paper proposes a SAR image change detection algorithm based on multi-scale feature extraction. In this paper, a kernel matrix with weights is used to extract features of two original images, and then the logarithmic ratio method is used to obtain the difference images of two images, and the change area of the images are extracted. Then, the different sizes of kernel matrix are used to extract the abstract features of different scales of the difference image. This operation can make the difference image have a higher contrast. Finally, the cumulative weighted average is obtained to obtain the final difference image, which can further suppress the speckle noise in the image.


Author(s):  
W. Feng ◽  
H. Sui ◽  
X. Chen

Studies based on object-based image analysis (OBIA) representing the paradigm shift in change detection (CD) have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF), as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA). Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA) algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy <i>c</i>-means (FCM) clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3) multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.


2019 ◽  
Vol 11 (2) ◽  
pp. 142 ◽  
Author(s):  
Wenping Ma ◽  
Hui Yang ◽  
Yue Wu ◽  
Yunta Xiong ◽  
Tao Hu ◽  
...  

In this paper, a novel change detection approach based on multi-grained cascade forest(gcForest) and multi-scale fusion for synthetic aperture radar (SAR) images is proposed. It detectsthe changed and unchanged areas of the images by using the well-trained gcForest. Most existingchange detection methods need to select the appropriate size of the image block. However, thesingle size image block only provides a part of the local information, and gcForest cannot achieve agood effect on the image representation learning ability. Therefore, the proposed approach choosesdifferent sizes of image blocks as the input of gcForest, which can learn more image characteristicsand reduce the influence of the local information of the image on the classification result as well.In addition, in order to improve the detection accuracy of those pixels whose gray value changesabruptly, the proposed approach combines gradient information of the difference image with theprobability map obtained from the well-trained gcForest. Therefore, the image edge information canbe enhanced and the accuracy of edge detection can be improved by extracting the image gradientinformation. Experiments on four data sets indicate that the proposed approach outperforms otherstate-of-the-art algorithms.


2012 ◽  
Vol 518-523 ◽  
pp. 1371-1374
Author(s):  
Chu La Sa ◽  
Gui Xiang Liu ◽  
Mu Lan Wang

In the study we mapped and analyzed the land use/cover changes in Zheng Lanqi county by visual interpreting the 3 sets of Landsat TM and ETM remotely sensed images received in 1990, 2000 and 2005.The 6 broad types of land use/ cover were interpreted for the study area. Through analyzing land use/cover changes, our study indicated that the grassland and built-up area is dominant landscape in the study area.The grassland in the study area shrank 588.68km2 for urbanization and farmland cultivation for first periods. The unchanged land is 10639.75km2 and 10743.18km2 for the two periods (1990-2000 and 2000-2005), respectively. This indicated that the landscape conversion in second period became stable than that of first period, and environment is improved since 2000.


Sign in / Sign up

Export Citation Format

Share Document