scholarly journals Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data

2021 ◽  
Vol 13 (4) ◽  
pp. 818
Author(s):  
Sofia Junttila ◽  
Julia Kelly ◽  
Natascha Kljun ◽  
Mika Aurela ◽  
Leif Klemedtsson ◽  
...  

Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.

Author(s):  
L. T. Huang ◽  
W. L. Jiao ◽  
T. F. Long ◽  
C. L. Kang

Abstract. The accurate acquisition of land surface reflectance (SR) data determines the accuracy of ground objects recognition, classification and land surface parameter inversion using remote sensing data, which is the basis of remote sensing data application. In this study, a Control No-Changed Set (CNCS) radiometric normalization method is proposed to realize spectral information transformation of multi-sensor data, which is based on the Iteratively Reweighted Multivariate Alteration Detection (IR-MAD), and includes automatic selection and step-by-step optimization of no-change pixels. The No-Changed set (NC) is obtained by selecting the original no-change pixels between the target image and the reference image according to the linear relationship. In the obtained original no-change regions, IR-MAD rules with iterative control are used to fix the final no-change pixels, after regression modeling and calculation, the normalized images are obtained. The method is tested on multi-images from multi-sensors in three groups of experiments (GF-1 WFV and Landsat-8 OLI, GF-1 PMS and Sentinel-2 MSI, and Landsat-8 OLI and Sentinel-2 MSI) with different landcover areas. The results of radiometric normalization are evaluated qualitatively and quantitatively. The data of the three groups of experiments have a high correlation (correlation coefficient r values > 0.85), indicating that they can be used together as complementary data. The Root Mean Squared Error (RMSE) values calculate from the NC between the reference and normalized target images are much smaller than those between the reference and original target images. The radiometric colour composition effects, and the typical ground objects spectral reflective curves of the reference and normalized target images are very similar after radiometric normalization. These results indicate that the CNCS method considers the linear relationship of the no-change pixels and is effective, stable, and can be used to improve the consistency of SR of multi-images from multi-sensors.


2007 ◽  
Vol 4 (5) ◽  
pp. 3143-3193 ◽  
Author(s):  
P. Olofsson ◽  
F. Lagergren ◽  
A. Lindroth ◽  
J. Lindström ◽  
L. Klemedtsson ◽  
...  

Abstract. Monthly averages of ecosystem respiration (ER), gross primary production (GPP) and net ecosystem exchange (NEE) over Scandinavian forest sites were estimated using regression models driven by air temperature (AT), absorbed photosynthetically active radiation (APAR) and vegetation indices. The models were constructed and evaluated using satellite data from Terra/MODIS and measured data collected at seven flux tower sites in northern Europe. Data used for model construction was excluded from the evaluation. Relationships between ground measured variables and the independent variables were investigated. It was found that the enhanced vegetation index (EVI) at 250 m resolution was highly noisy for the coniferous sites, and hence, 1 km EVI was used for the analysis. Linear relationships between EVI and the biophysical variables were found for both coniferous and deciduous data: correlation coefficients ranged from 0.91 to 0.79, and 0.85 to 0.67, respectively. Due to saturation, there were no linear relationships between normalized difference vegetation index (NDVI) and the ground measured parameters found at any site. APAR correlated better with the parameters in question than the vegetation indices. Modeled GPP and ER were in good agreement with measured values, with more than 90% of the variation in measured GPP and ER being explained by the coniferous models. The site-specific respiration rate at 10°C (R10) was needed for describing the ER variation between sites. Even though monthly NEE was modeled with less accuracy than GPP, 61% and 75% (dec. and con., respectively) of the variation in the measured time series was explained by the model. These results are important for moving towards operational remote sensing of forest carbon balance across Northern Europe.


2008 ◽  
Vol 5 (3) ◽  
pp. 817-832 ◽  
Author(s):  
P. Olofsson ◽  
F. Lagergren ◽  
A. Lindroth ◽  
J. Lindström ◽  
L. Klemedtsson ◽  
...  

Abstract. Monthly averages of ecosystem respiration (ER), gross primary production (GPP) and net ecosystem exchange (NEE) over Scandinavian forest sites were estimated using regression models driven by air temperature (AT), absorbed photosynthetically active radiation (APAR) and vegetation indices. The models were constructed and evaluated using satellite data from Terra/MODIS and measured data collected at seven flux tower sites in northern Europe. Data used for model construction was excluded from the evaluation. Relationships between ground measured variables and the independent variables were investigated. It was found that the enhanced vegetation index (EVI) at 250 m resolution was highly noisy for the coniferous sites, and hence, 1 km EVI was used for the analysis. Linear relationships between EVI and the biophysical variables were found: correlation coefficients between EVI and GPP, NEE, and AT ranged from 0.90 to 0.79 for the deciduous data, and from 0.85 to 0.67 for the coniferous data. Due to saturation, there were no linear relationships between normalized difference vegetation index (NDVI) and the ground measured parameters found at any site. APAR correlated better with the parameters in question than the vegetation indices. Modeled GPP and ER were in good agreement with measured values, with more than 90% of the variation in measured GPP and ER being explained by the coniferous models. The site-specific respiration rate at 10°C (R10) was needed for describing the ER variation between sites. Even though monthly NEE was modeled with less accuracy than GPP, 61% and 75% (dec. and con., respectively) of the variation in the measured time series was explained by the model. These results are important for moving towards operational remote sensing of forest carbon balance across Northern Europe.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


2018 ◽  
Vol 15 (15) ◽  
pp. 4731-4757 ◽  
Author(s):  
Ronny Meier ◽  
Edouard L. Davin ◽  
Quentin Lejeune ◽  
Mathias Hauser ◽  
Yan Li ◽  
...  

Abstract. Modeling studies have shown the importance of biogeophysical effects of deforestation on local climate conditions but have also highlighted the lack of agreement across different models. Recently, remote-sensing observations have been used to assess the contrast in albedo, evapotranspiration (ET), and land surface temperature (LST) between forest and nearby open land on a global scale. These observations provide an unprecedented opportunity to evaluate the ability of land surface models to simulate the biogeophysical effects of forests. Here, we evaluate the representation of the difference of forest minus open land (i.e., grassland and cropland) in albedo, ET, and LST in the Community Land Model version 4.5 (CLM4.5) using various remote-sensing and in situ data sources. To extract the local sensitivity to land cover, we analyze plant functional type level output from global CLM4.5 simulations, using a model configuration that attributes a separate soil column to each plant functional type. Using the separated soil column configuration, CLM4.5 is able to realistically reproduce the biogeophysical contrast between forest and open land in terms of albedo, daily mean LST, and daily maximum LST, while the effect on daily minimum LST is not well captured by the model. Furthermore, we identify that the ET contrast between forests and open land is underestimated in CLM4.5 compared to observation-based products and even reversed in sign for some regions, even when considering uncertainties in these products. We then show that these biases can be partly alleviated by modifying several model parameters, such as the root distribution, the formulation of plant water uptake, the light limitation of photosynthesis, and the maximum rate of carboxylation. Furthermore, the ET contrast between forest and open land needs to be better constrained by observations to foster convergence amongst different land surface models on the biogeophysical effects of forests. Overall, this study demonstrates the potential of comparing subgrid model output to local observations to improve current land surface models' ability to simulate land cover change effects, which is a promising approach to reduce uncertainties in future assessments of land use impacts on climate.


Author(s):  
A. Rajani, Dr. S.Varadarajan

Land Surface Temperature (LST) quantification is needed in various applications like temporal analysis, identification of global warming, land use or land cover, water management, soil moisture estimation and natural disasters. The objective of this study is estimation as well as validation of temperature data at 14 Automatic Weather Stations (AWS) in Chittoor District of Andhra Pradesh with LST extracted by using remote sensing as well as Geographic Information System (GIS). Satellite data considered for estimation purpose is LANDSAT 8. Sensor data used for assessment of LST are OLI (Operational Land Imager) and TIR (Thermal Infrared). Thermal band  contains spectral bands of 10 and 11 were considered for evaluating LST independently by using algorithm called Mono Window Algorithm (MWA). Land Surface Emissivity (LSE) is the vital parameter for calculating LST. The LSE estimation requires NDVI (Normalized Difference Vegetation Index) which is computed by using Band 4 (visible Red band) and band 5 (Near-Infra Red band) spectral radiance bands. Thermal band images having wavelength 11.2 µm and 12.5 µm of 30th May, 2015 and 21st October, 2015 were processed for the analysis of LST. Later on validation of estimated LST through in-suite temperature data obtained from 14 AWS stations in Chittoor district was carried out. The end results showed that, the LST retrieved by using proposed method achieved 5 per cent greater correlation coefficient (r) compared to LST retrieved by using existing method which is based on band 10.


Author(s):  
Cristina Serban ◽  
Carmen Maftei

The most advanced and applicable approach today in the development of environmental monitoring programs is the integration of remote sensing and Grid computing services into a monitoring and forecasting system that helps the analyst to understand the problem without being a remote sensing or computer expert. In this chapter we present the main features of Grid computing and how we can use it in conjunction with remote sensing to develop several applications that will estimate ET (Evapotranspiration), LST (Land Surface Temperature) and some vegetation indices (VI's) directly from a satellite image, these parameters playing an essential role in all activities related to water resources management.


2011 ◽  
Vol 15 (7) ◽  
pp. 2317-2326 ◽  
Author(s):  
G.-J. Yang ◽  
C.-J. Zhao ◽  
W.-J. Huang ◽  
J.-H. Wang

Abstract. Soil moisture links the hydrologic cycle and the energy budget of land surfaces by regulating latent heat fluxes. An accurate assessment of the spatial and temporal variation of soil moisture is important to the study of surface biogeophysical processes. Although remote sensing has proven to be one of the most powerful tools for obtaining land surface parameters, no effective methodology yet exists for in situ soil moisture measurement based on a Bidirectional Reflectance Distribution Function (BRDF) model, such as the Hapke model. To retrieve and analyze soil moisture, this study applied the soil water parametric (SWAP)-Hapke model, which introduced the equivalent water thickness of soil, to ground multi-angular and hyperspectral observations coupled with, Powell-Ant Colony Algorithm methods. The inverted soil moisture data resulting from our method coincided with in situ measurements (R2 = 0.867, RMSE = 0.813) based on three selected bands (672 nm, 866 nm, 2209 nm). It proved that the extended Hapke model can be used to estimate soil moisture with high accuracy based on the field multi-angle and multispectral remote sensing data.


2020 ◽  
Vol 12 (4) ◽  
pp. 725 ◽  
Author(s):  
Neal J. Pastick ◽  
Devendra Dahal ◽  
Bruce K. Wylie ◽  
Sujan Parajuli ◽  
Stephen P. Boyte ◽  
...  

Invasive annual grasses, such as cheatgrass (Bromus tectorum L.), have proliferated in dryland ecosystems of the western United States, promoting increased fire activity and reduced biodiversity that can be detrimental to socio-environmental systems. Monitoring exotic annual grass cover and dynamics over large areas requires the use of remote sensing that can support early detection and rapid response initiatives. However, few studies have leveraged remote sensing technologies and computing frameworks capable of providing rangeland managers with maps of exotic annual grass cover at relatively high spatiotemporal resolutions and near real-time latencies. Here, we developed a system for automated mapping of invasive annual grass (%) cover using in situ observations, harmonized Landsat and Sentinel-2 (HLS) data, maps of biophysical variables, and machine learning techniques. A robust and automated cloud, cloud shadow, water, and snow/ice masking procedure (mean overall accuracy >81%) was implemented using time-series outlier detection and data mining techniques prior to spatiotemporal interpolation of HLS data via regression tree models (r = 0.94; mean absolute error (MAE) = 0.02). Weekly, cloud-free normalized difference vegetation index (NDVI) image composites (2016–2018) were used to construct a suite of spectral and phenological metrics (e.g., start and end of season dates), consistent with information derived from Moderate Resolution Image Spectroradiometer (MODIS) data. These metrics were incorporated into a data mining framework that accurately (r = 0.83; MAE = 11) modeled and mapped exotic annual grass (%) cover throughout dryland ecosystems in the western United States at a native, 30-m spatial resolution. Our results show that inclusion of weekly HLS time-series data and derived indicators improves our ability to map exotic annual grass cover, as compared to distribution models that use MODIS products or monthly, seasonal, or annual HLS composites as primary inputs. This research fills a critical gap in our ability to effectively assess, manage, and monitor drylands by providing a framework that allows for an accurate and timely depiction of land surface phenology and exotic annual grass cover at spatial and temporal resolutions that are meaningful to local resource managers.


2017 ◽  
Vol 21 (11) ◽  
pp. 5693-5708 ◽  
Author(s):  
Jordi Etchanchu ◽  
Vincent Rivalland ◽  
Simon Gascoin ◽  
Jérôme Cros ◽  
Tiphaine Tallec ◽  
...  

Abstract. Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively) that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA) land surface model included in the EXternalized SURface (SURFEX) modeling platform. The study focuses on the effect of the leaf area index (LAI) spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m). The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km). An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE). Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE) in the simulated evapotranspiration. This finding is attributable to a better description of LAI evolution processes with Formosat-2 data, which further modify soil water content and drainage of soil reservoirs. Effects on annual drainage patterns remain small but significant, i.e., an increase roughly equivalent to 4 % of annual precipitation levels with simulations using Formosat-2 data in comparison to the reference simulation values. This study illustrates the potential for the Sentinel-2 mission to better represent effects of crop management on water budgeting for large, anthropized river basins.


Sign in / Sign up

Export Citation Format

Share Document