scholarly journals Geomorphological and Spatial Characteristics of Underwater Volcanoes in the Easternmost Australian-Antarctic Ridge

2021 ◽  
Vol 13 (5) ◽  
pp. 997
Author(s):  
Hakkyum Choi ◽  
Seung-Sep Kim ◽  
Sung-Hyun Park ◽  
Hyoung Jun Kim

Underwater volcanoes and their linear distribution on the flanks of mid-ocean ridges are common submarine topographic structures at intermediate- and fast-spreading systems, where sufficient melt supplies are often available. Such magma sources beneath the seafloor located within a few kilometers of the corresponding ridge-axis tend to concentrate toward the axis during the upwelling process and contribute to seafloor formation. As a result, seamounts on the flanks of the ridge axis are formed at a distance from the spreading axis and distributed asymmetrically about the axis. In this study, we examined three linearly aligned seamount chains on the flanks of the KR1 ridge, which is the easternmost and longest Australian-Antarctic Ridge (AAR) segment. The AAR is an intermediate-spreading rate system located between the Southeast Indian Ridge and Macquarie Triple Junction of the Australian-Antarctic-Pacific plates. By inspecting the high-resolution shipboard multi-beam bathymetric data newly acquired in the study area, we detected 20 individual seamounts. The volcanic lineament runs parallel to the spreading direction of the KR1 segment. The geomorphologic parameters of height, basal area, volume, and summit types of the identified seamounts were individually measured. We also investigated the spatial distribution of the seamounts along the KR1 segment, which exhibits large variations in axial morphology with depth along the ridge axis. Based on the geomorphology and spatial distribution, all the KR1 seamounts can be divided into two groups: the subset seamounts of volcanic chains distributed along the KR1 segment characterized by high elevation and large volume, and the small seamounts distributed mostly on the western KR1. The differences in the volumetric magnitude of volcanic eruptions on the seafloor and the distance from the given axis between these two groups indicate the presence of magma sources with different origins.

1973 ◽  
Vol 3 (4) ◽  
pp. 495-500 ◽  
Author(s):  
James A. Moore ◽  
Carl A. Budelsky ◽  
Richard C. Schlesinger

A new competition index, modified Area Potentially Available (APA), was tested in a complex unevenaged stand composed of 19 different hardwood species. APA considers tree size, spatial distribution, and distance relationships in quantifying intertree competition and exhibits a strong correlation with individual tree basal area growth. The most important characteristic of APA is its potential for evaluating silvicultural practices.


2010 ◽  
Vol 40 (11) ◽  
pp. 2164-2174 ◽  
Author(s):  
Sarah E. Stehn ◽  
Christopher R. Webster ◽  
Janice M. Glime ◽  
Michael A. Jenkins

We investigated the influence of fine-scale elevational gradients and overstory disturbance on bryophyte distribution, diversity, and community composition. Bryophyte species cover and richness were sampled across 60 randomly selected plots within high-elevation spruce–fir ( Picea – Abies ) forests of Great Smoky Mountains National Park. Ordination and regression analyses revealed a fine-scale elevation gradient (700 m) in bryophyte community composition. Observed changes in bryophyte diversity and community composition were also associated with variation in deciduous basal area and thus litter composition, the prevalence of herbaceous plants, and the degree of canopy openness resulting from balsam woolly adelgid ( Adelges piceae Ratz.) infestation. Although overstory disturbances, such as those caused by the adelgid, create suitable substrate for bryophyte colonization, the corresponding increase in light availability and deciduous basal area may alter bryophyte diversity and community assemblages.


2012 ◽  
Vol 13 ◽  
pp. 28-34 ◽  
Author(s):  
D. A. H. Teagle ◽  
B. Ildefonse ◽  
P. Blum ◽  

Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. <br><br> Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. <br><br> Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.13.04.2011" target="_blank">10.2204/iodp.sd.13.04.2011</a>


Nature ◽  
1993 ◽  
Vol 364 (6439) ◽  
pp. 706-708 ◽  
Author(s):  
Jason Phipps Morgan ◽  
Y. John Chen

2020 ◽  
Vol 304 ◽  
pp. 106486 ◽  
Author(s):  
Shi J. Sim ◽  
Marc Spiegelman ◽  
Dave R. Stegman ◽  
Cian Wilson
Keyword(s):  

2001 ◽  
Vol 31 (1) ◽  
pp. 132-142 ◽  
Author(s):  
Adrián Ares ◽  
James H Fownes

We examined stand growth, canopy development, and resource use of Fraxinus uhdei (Wenzig) Lingelsh, a nonindigenous tree grown in Hawaii, and its interactions with the native, N-fixing tree Acacia koa Gray. Along a gradient of decreasing rainfall with elevation, on Histosols, F. uhdei had decreased stand basal area, productivity, and canopy development. At high-elevation sites, productivity of F. uhdei was limited by N, and F. uhdei benefitted from association with A. koa, as (i) foliar N content of F. uhdei was positively related to aboveground net primary productivity (ANPP), (ii) leaf area index, biomass increment, and ANPP of F. uhdei increased in a single-species stand after N additions, but there was no response by either F. uhdei or A. koa in a mixed stand, and (iii) productivity of F. uhdei in mixed stands with A. koa at high-elevation sites was greater than in single-species stands, and F. uhdei foliage was enriched with N in proportion to the fraction of stand basal area in A. koa. Seemingly, growth of F. uhdei on Histosols was also limited by water availability, as an index of carbon isotope composition of leaves (δ13C), and, therefore, intrinsic water-use efficiency (WUE) increased with elevation. Biomass production of F. uhdei stands per unit leaf area and per unit intercepted radiation (ε) decreased with increasing elevation on Histosols. Decreased nitrogen-use efficiency and ε of F. uhdei on Histosols were both traded off against increased WUE.


Sign in / Sign up

Export Citation Format

Share Document