scholarly journals An Optical and SAR Based Fusion Approach for Mapping Surface Water Dynamics over Mainland China

2021 ◽  
Vol 13 (9) ◽  
pp. 1663
Author(s):  
Daniel Druce ◽  
Xiaoye Tong ◽  
Xia Lei ◽  
Tao Guo ◽  
Cecile M.M. Kittel ◽  
...  

Earth Observation (EO) data is a critical information source for mapping and monitoring water resources over large inaccessible regions where hydrological in-situ networks are sparse. In this paper, we present a simple yet robust method for fusing optical and Synthetic Aperture Radar (SAR) data for mapping surface water dynamics over mainland China. This method uses a multivariate logistic regression model to estimate monthly surface water extent over a four-year period (2017 to 2020) from the combined usages of Sentinel-1, Sentinel-2 and Landsat-8 imagery. Multi-seasonal high-resolution images from the Chinese Gaofen satellites are used as a reference for an independent validation showing a high degree of agreement (overall accuracy 94%) across a diversity of climatic and physiographic regions demonstrating potential scalability beyond China. Through inter-comparison with similar global scale products, this paper further shows how this new mapping technique provides improved spatio-temporal characterization of inland water bodies, and for better capturing smaller water bodies (< 0.81 ha in size). The relevance of the results is discussed, and we find this new enhanced monitoring approach has the potential to advance the use of Earth observation for water resource management, planning and reporting.

Author(s):  
M. Sathianarayanan

<p><strong>Abstract.</strong> Rapid change of Adama wereda during the last three decades has posed a serious threat to the existence of ecological systems, specifically water bodies which play a crucial part in supporting life. Role of Satellite images in Remote Sensing could be more important in investigation, monitoring dynamically and planning of natural surface water resources. Landsat-5(TM) &amp;amp; Landsat 8 (OLI) has high spatial, temporal and multispectral resolution and therefore provides consistent and perfect data to detect changes in surface changes of water bodies. In this paper, a study was conducted to detect the changes in water body extent during the period of 1984, 2000 and 2017 using various water indices such as namely Water Ratio Index (WRI), Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), supervised classification and wetness component of K-T transformation and the results are Presented. NDWI has been adopted for this study as compared with other indices through ground survey. The results showed an intense decreasing trend in the lakes of chelekleka, kiroftu, lake 1 and lake 3 of surface area in the period 1984–2017, especially between 2000 and 2017 when the lake lost about 1.309<span class="thinspace"></span>km<sup>2</sup> (one third) of its surface area compared to the year 2000, which is equivalent to 76%, 18%, 0.03% and 96%. Interestingly koka lake has shown very erratic changes in its area coverage by losing almost 3.5<span class="thinspace"></span>km<sup>2</sup> between 1984 and 2000 and then climbing back up by 14.8<span class="thinspace"></span>km<sup>2</sup> in 2017. Percentage of increment was observed that 10.6% as compared with previous year.</p>


2021 ◽  
Author(s):  
James Harding

&lt;p&gt;Earth Observation (EO) satellites are drawing considerable attention in areas of water resource management, given their potential to provide unprecedented information on the condition of aquatic ecosystems. Despite ocean colours long history; water quality parameter retrievals from shallow and inland waters remains a complex undertaking. Consistent, cross-mission retrievals of the primary optical parameters using state-of-the-art algorithms are limited by the added optical complexity of these waters. Less work has acknowledged their non- or weakly optical parameter counterparts. These can be more informative than their vivid counterparts, their potential covariance would be regionally specific. Here, we introduce a multi-input, multi-output Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in shallow and inland water bodies. The model is trained and validated using a sizeable historical database in excess of 1,000,000 samples across 38 optical and non-optical parameters, spanning 20 years across 500 surface waters in Scotland. The single network learns to predict concurrently Chlorophyll-a, Colour, Turbidity, pH, Calcium, Total Phosphorous, Total Organic Carbon, Temperature, Dissolved Oxygen and Suspended Solids from real Landsat 7, Landsat 8, and Sentinel 2 spectra. The MDN is found to fully preserve the covariances of the optical and non-optical parameters, while known one-to-many mappings within the non-optical parameters are retained. Initial performance evaluations suggest significant improvements in Chl-a retrievals from existing state-of-the-art algorithms. MDNs characteristically provide a means of quantifying the noise variance around a prediction for a given input, now pertaining to real data under a wide range of atmospheric conditions. We find this to be informative for example in detecting outlier pixels such as clouds, and may similarly be used to guide or inform future work in academic or industrial contexts.&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Stefan Schlaffer ◽  
Marco Chini ◽  
Wouter Dorigo

&lt;p&gt;The North American Prairie Pothole Region (PPR) consists of millions of wetlands and holds great importance for biodiversity, water storage and flood management. The wetlands cover a wide range of sizes from a few square metres to several square kilometres. Prairie hydrology is greatly influenced by the threshold behaviour of potholes leading to spilling as well as merging of adjacent wetlands. The knowledge of seasonal and inter-annual surface water dynamics in the PPR is critical for understanding this behaviour of connected and isolated wetlands. Synthetic aperture radar (SAR) sensors, e.g. used by the Copernicus Sentinel-1 mission, have great potential to provide high-accuracy wetland extent maps even when cloud cover is present. We derived water extent during the ice-free months May to October from 2015 to 2020 by fusing dual-polarised Sentinel-1 backscatter data with topographical information. The approach was applied to a prairie catchment in North Dakota. Total water area, number of water bodies and median area per water body were computed from the time series of water extent maps. Surface water dynamics showed strong seasonal dynamics especially in the case of small water bodies (&lt;&amp;#160;1&amp;#160;ha) with a decrease in water area and number of small water bodies from spring throughout summer when evaporation rates in the PPR are typically high. Larger water bodies showed a more stable behaviour during most years. Inter-annual dynamics were strongly related to drought indices based on climate data, such as the Palmer Drought Severity Index. During the extremely wet period of late 2019 to 2020, the dynamics of both small and large water bodies changed markedly. While a larger number of small water bodies was encountered, which remained stable throughout the wet period, also the area of larger water bodies increased, partly due to merging of smaller adjacent water bodies. The results demonstrate the potential of Sentinel-1 data for long-term monitoring of prairie wetlands while limitations exist due to the rather low temporal resolution of 12 days over the PPR.&lt;/p&gt;


2020 ◽  
Vol 12 (19) ◽  
pp. 3157
Author(s):  
Andrew Ogilvie ◽  
Jean-Christophe Poussin ◽  
Jean-Claude Bader ◽  
Finda Bayo ◽  
Ansoumana Bodian ◽  
...  

Accurate monitoring of surface water bodies is essential in numerous hydrological and agricultural applications. Combining imagery from multiple sensors can improve long-term monitoring; however, the benefits derived from each sensor and the methods to automate long-term water mapping must be better understood across varying periods and in heterogeneous water environments. All available observations from Landsat 7, Landsat 8, Sentinel-2 and MODIS over 1999–2019 are processed in Google Earth Engines to evaluate and compare the benefits of single and multi-sensor approaches in long-term water monitoring of temporary water bodies, against extensive ground truth data from the Senegal River floodplain. Otsu automatic thresholding is compared with default thresholds and site-specific calibrated thresholds to improve Modified Normalized Difference Water Index (MNDWI) classification accuracy. Otsu thresholding leads to the lowest Root Mean Squared Error (RMSE) and high overall accuracies on selected Sentinel-2 and Landsat 8 images, but performance declines when applied to long-term monitoring compared to default or site-specific thresholds. On MODIS imagery, calibrated thresholds are crucial to improve classification in heterogeneous water environments, and results highlight excellent accuracies even in small (19 km2) water bodies despite the 500 m spatial resolution. Over 1999–2019, MODIS observations reduce average daily RMSE by 48% compared to the full Landsat 7 and 8 archive and by 51% compared to the published Global Surface Water datasets. Results reveal the need to integrate coarser MODIS observations in regional and global long-term surface water datasets, to accurately capture flood dynamics, overlooked by the full Landsat time series before 2013. From 2013, the Landsat 7 and Landsat 8 constellation becomes sufficient, and integrating MODIS observations degrades performance marginally. Combining Landsat and Sentinel-2 yields modest improvements after 2015. These results have important implications to guide the development of multi-sensor products and for applications across large wetlands and floodplains.


2020 ◽  
Vol 12 (10) ◽  
pp. 1634 ◽  
Author(s):  
Raha Hakimdavar ◽  
Alfred Hubbard ◽  
Frederick Policelli ◽  
Amy Pickens ◽  
Matthew Hansen ◽  
...  

Lack of national data on water-related ecosystems is a major challenge to achieving the Sustainable Development Goal (SDG) 6 targets by 2030. Monitoring surface water extent, wetlands, and water quality from space can be an important asset for many countries in support of SDG 6 reporting. We demonstrate the potential for Earth observation (EO) data to support country reporting for SDG Indicator 6.6.1, ‘Change in the extent of water-related ecosystems over time’ and identify important considerations for countries using these data for SDG reporting. The spatial extent of water-related ecosystems, and the partial quality of water within these ecosystems is investigated for seven countries. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 5, 7, and 8 with Shuttle Radar Topography Mission (SRTM) are used to measure surface water extent at 250 m and 30 m spatial resolution, respectively, in Cambodia, Jamaica, Peru, the Philippines, Senegal, Uganda, and Zambia. The extent of mangroves is mapped at 30 m spatial resolution using Landsat 8 Operational Land Imager (OLI), Sentinel-1, and SRTM data for Jamaica, Peru, and Senegal. Using Landsat 8 and Sentinel 2A imagery, total suspended solids and chlorophyll-a are mapped over time for a select number of large surface water bodies in Peru, Senegal, and Zambia. All of the EO datasets used are of global coverage and publicly available at no cost. The temporal consistency and long time-series of many of the datasets enable replicability over time, making reporting of change from baseline values consistent and systematic. We find that statistical comparisons between different surface water data products can help provide some degree of confidence for countries during their validation process and highlight the need for accuracy assessments when using EO-based land change data for SDG reporting. We also raise concern that EO data in the context of SDG Indicator 6.6.1 reporting may be more challenging for some countries, such as small island nations, than others to use in assessing the extent of water-related ecosystems due to scale limitations and climate variability. Country-driven validation of the EO data products remains a priority to ensure successful data integration in support of SDG Indicator 6.6.1 reporting. Multi-country studies such as this one can be valuable tools for helping to guide the evolution of SDG monitoring methodologies and provide a useful resource for countries reporting on water-related ecosystems. The EO data analyses and statistical methods used in this study can be easily replicated for country-driven validation of EO data products in the future.


2020 ◽  
Author(s):  
Rebecca Dell ◽  
Neil Arnold ◽  
Ian Willis ◽  
Alison Banwell ◽  
Andrew Williamson ◽  
...  

Abstract. Surface meltwater on ice shelves can be stored as slush, in melt ponds, in surface streams and rivers, and may also fill crevasses. The collapse of the Larsen B Ice Shelf in 2002 has been attributed to the sudden drainage of ~ 3000 surface lakes, and has highlighted the potential for surface water to cause ice shelf instability. Surface meltwater systems have been identified across numerous Antarctic ice shelves, however, the extent to which these systems impact ice shelf instability is poorly constrained. To better understand the role of surface meltwater systems on ice shelves, it is important to track their seasonal development, monitoring the fluctuations in surface water volume and the transfer of water across the ice shelf. Here, we use Landsat 8 and Sentinel-2 imagery to track surface meltwater across the Nivlisen Ice Shelf in the 2016–2017 melt season. Using the Fully Automated Supraglacial-Water Tracking algorithm for Ice Shelves (FASTISh), we identify and track the development of 1598 water bodies. The total volume of surface meltwater peaks on 26th January 2017 at 5.5 × 107 m3. 63 % of this total volume is held within two large linear surface meltwater systems, which are orientated along the ice shelves north-south axis and appear to migrate away from the grounding line during the melt season, facilitating large scale lateral water transfer towards the ice shelf front. This transfer is facilitated by two large surface streams, which encompass smaller water bodies and follow the surface slope of the ice shelf.


2015 ◽  
Vol 12 (11) ◽  
pp. 11847-11903 ◽  
Author(s):  
V. Heimhuber ◽  
M. G. Tulbure ◽  
M. Broich

Abstract. The usage of time series of earth observation (EO) data for analyzing and modeling surface water dynamics (SWD) across broad geographic regions provides important information for sustainable management and restoration of terrestrial surface water resources, which suffered alarming declines and deterioration globally. The main objective of this research was to model SWD from a unique validated Landsat-based time series (1986–2011) continuously through cycles of flooding and drying across a large and heterogeneous river basin, the Murray–Darling Basin (MDB) in Australia. We used dynamic linear regression to model remotely sensed SWD as a function of river flow and spatially explicit time series of soil moisture (SM), evapotranspiration (ET) and rainfall (P). To enable a consistent modeling approach across space, we modeled SWD separately for hydrologically distinct floodplain, floodplain-lake and non-floodplain areas within eco-hydrological zones and 10 km × 10 km grid cells. We applied this spatial modeling framework (SMF) to three sub-regions of the MDB, for which we quantified independently validated lag times between river gauges and each individual grid cell and identified the local combinations of variables that drive SWD. Based on these automatically quantified flow lag times and variable combinations, SWD on 233 (64 %) out of 363 floodplain grid cells were modeled with r2 ≥ 0.6. The contribution of P, ET and SM to the models' predictive performance differed among the three sub-regions, with the highest contributions in the least regulated and most arid sub-region. The SMF presented here is suitable for modeling SWD on finer spatial entities compared to most existing studies and applicable to other large and heterogeneous river basins across the world.


2020 ◽  
Vol 14 (7) ◽  
pp. 2313-2330 ◽  
Author(s):  
Rebecca Dell ◽  
Neil Arnold ◽  
Ian Willis ◽  
Alison Banwell ◽  
Andrew Williamson ◽  
...  

Abstract. Surface meltwater on ice shelves can exist as slush, it can pond in lakes or crevasses, or it can flow in surface streams and rivers. The collapse of the Larsen B Ice Shelf in 2002 has been attributed to the sudden drainage of ∼3000 surface lakes and has highlighted the potential for surface water to cause ice-shelf instability. Surface meltwater systems have been identified across numerous Antarctic ice shelves, although the extent to which these systems impact ice-shelf instability is poorly constrained. To better understand the role of surface meltwater systems on ice shelves, it is important to track their seasonal development, monitoring the fluctuations in surface water volume and the transfer of water across ice-shelf surfaces. Here, we use Landsat 8 and Sentinel-2 imagery to track surface meltwater across the Nivlisen Ice Shelf in the 2016–2017 melt season. We develop the Fully Automated Supraglacial-Water Tracking algorithm for Ice Shelves (FASTISh) and use it to identify and track the development of 1598 water bodies, which we classify as either circular or linear. The total volume of surface meltwater peaks on 26 January 2017 at 5.5×107 m3. At this time, 63 % of the total volume is held within two linear surface meltwater systems, which are up to 27 km long, are orientated along the ice shelf's north–south axis, and follow the surface slope. Over the course of the melt season, they appear to migrate away from the grounding line, while growing in size and enveloping smaller water bodies. This suggests there is large-scale lateral water transfer through the surface meltwater system and the firn pack towards the ice-shelf front during the summer.


2020 ◽  
Vol 12 (22) ◽  
pp. 3701
Author(s):  
Deepakrishna Somasundaram ◽  
Fangfang Zhang ◽  
Sisira Ediriweera ◽  
Shenglei Wang ◽  
Junsheng Li ◽  
...  

Sri Lanka contains a large number of natural and man-made water bodies, which play an essential role in irrigation and domestic use. The island has recently been identified as a global hotspot of climate change extremes. However, the extent, spatial distribution, and the impact of climate and anthropogenic activities on these water bodies have remained unknown. We investigated the distribution, spatial and temporal changes, and the impacts of climatic and anthropogenic drivers on water dynamics in Dry, Intermediate, and Wet zones of the island. We used Landsat 5 and Landsat 8 images to generate per-pixel seasonal and annual water occurrence frequency maps for the period of 1988–2019. The results of the study demonstrated high inter- and intra-annual variations in water with a rapid increase. Further, results showed strong zonal differences in water dynamics, with most dramatic variations in the Dry zone. Our results revealed that 1607.73 km2 of the land area of the island is covered by water bodies, among this 882.01 km2 (54.86%) is permanent and 725.72 km2 (45.14%) is seasonal water area. Total inland seasonal water increased with a dramatic annual growth rate of 7.06 ± 1.97 km2 compared to that of permanent water (4.47 ± 2.08 km2/year). Sri Lanka has the highest permanent water area during December–February (1045.97 km2), and drops to the lowest in May–September (761.92 km2) when the seasonal water (846.46 km2) is higher than permanent water. The surface water area was positively related to both precipitation and Gross Domestic Product, while negatively related to the temperature. Findings of our study provide important insights into possible spatiotemporal changes in surface water availability in Sri Lanka under certain climate change and anthropogenic activities.


Sign in / Sign up

Export Citation Format

Share Document