scholarly journals Detecting Winter Cover Crops and Crop Residues in the Midwest US Using Machine Learning Classification of Thermal and Optical Imagery

2021 ◽  
Vol 13 (10) ◽  
pp. 1998
Author(s):  
Mallory Liebl Barnes ◽  
Landon Yoder ◽  
Mahsa Khodaee

Cover crops are an increasingly popular practice to improve agroecosystem resilience to climate change, pests, and other stressors. Despite their importance for climate mitigation and soil health, there remains an urgent need for methods that link winter cover crops with regional-scale climate mitigation and adaptation potential. Remote sensing is ideally suited to provide these linkages, yet, cover cropping has not been analyzed extensively in remote sensing research. Methods used for remote sensing of crops from satellites traditionally leverage the difference between visible and near-infrared reflectance to isolate the signal of photosynthetically active vegetation. However, using traditional greenness indices like the Normalized Difference Vegetation Index (NDVI) for remotely sensing winter vegetation, such as winter cover crops, is challenging because vegetation reflectance signals are often confounded with reflectance of bare soil and crop residues. Here, we present new and established methods of detecting winter cover crops using remote sensing observations. We find that remote sensing methods that incorporate thermal data in addition to traditional reflectance metrics are best able to distinguish between winter farm management practices. We conclude by addressing the potential of existing and upcoming hyperspectral and thermal missions to further assess agroecosystem function in the context of global change.

2016 ◽  
Vol 38 (4) ◽  
Author(s):  
RICARDO SFEIR DE AGUIAR ◽  
PAULO VICENTE CONTADOR ZACCHEO ◽  
CARMEN SILVIA VIEIRA JANEIRO NEVES ◽  
MARCELO SFEIR DE AGUIAR ◽  
FERNANDO TEIXEIRA DE OLIVEIRA

ABSTRACT The use of cover crops species may be an important strategy in the pursuit of sustainability of agroecosystems, considering benefits to soil, such as improvements of physical and chemical characteristics, and weed control. The objective of this study was to evaluate the effect of winter cover crops and other soil managements on chemical soil properties, on the cycle, on the production of the first cycle and on the fruit quality of banana cv. Nanicão Jangada in Andirá – PR, Brazil. The experiment was carried out in a commercial. Planting of banana suckers from the grower area occurred in the first half of March 2011, with a spacing of 2.40 m between rows and 1.90 m between plants. The experiment was designed in randomized blocks with four replications and six plants per plot. The six treatments were: black oat (Avenastrigosa Schreb), forage turnip (Raphanus sativus L. var. oleiferus), consortium of black oat and forage turnip, chicken litter, residues of banana plants, and bare ground. The evaluations were vegetative development and life cycle of banana plants, yield and quality of fruits, soil chemical characterstics, and fresh and dry mass of green manures. The results were submitted to ANOVA (F Test), and Tukey test at 5 % probability. Black oat and black oat with forage turnip consortium were superior in biomass production. Systems of soil management had no effect on the variables, except in the periods between planting and flowering and between planting and harvest, which were shorter in the treatment of soil management with crop residues, longer in the treatment with forage turnip, and intermediate in the other treatments.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 492e-492
Author(s):  
Hilary J. Sampson ◽  
S. A. Weinbaum

Extractable soil N may be leached below the plant rooting zone. and into the ground water. Orchards devoid of actively growing winter cover crops are subject to the greatest risk of NO3- leaching during tree dormancy in California. We examined the patterns of KCl extractable NH4+ and NO3-. and potentially mineralizable N (PMN) in the top 10 cm of soil across transects (60 samples, 150 m) in 3 almond orchard systems at 5 phenological stages in 1993. Extractable N was affected both spatially and temporally by management practices (e.g. herbicide or fertilizer application) and soil temperature. PMN did not exhibit local spatial patterns; geostatistical analysis revealed a trend across the transects indicating a larger scale of soil variation. possibly resulting from land leveling. The conventionally-managed orchard without a cover crop demonstrated higher levels of extractable NH4+ and NO3- in the top 10 cm in Feb. and Nov. 1993, compared with orchards managed with organic fertilizers and winter cover crops.


2017 ◽  
Vol 70 ◽  
pp. 171-178
Author(s):  
M.R. Trolove ◽  
T.K. James ◽  
A.W. Holmes ◽  
M.D. Parker ◽  
S.J. McDougall ◽  
...  

Winter cover crops potentially have a number of positive production and environmental benefits on subsequent maize (Zea mays) crops. A field study was undertaken in 2016/17 to evaluate the effects of winter cover crop residues on the emergence and growth of weeds, required herbicide inputs, and yields of maize in comparison to a winter fallow. Weed ground cover at maize canopy closure was 81—85% less than the winter fallow in plots with ryegrass (Lolium multiflorum), oats (Avena sativa) and gland clover (Trifolium glanduliferum) residues and 57% less in faba bean (Vicia faba). Ryegrass and oats residues maintained ground coverage of >70%, while clover had only 6% at canopy closure, but suppressed weeds similarly. In the absence of herbicides maize silage yields in plots with cover crop residues were similar to those in herbicide treatments, although maize establishment and growth was slower in oats and ryegrass.


2019 ◽  
Author(s):  
Carson Bowers ◽  
Michael Toews ◽  
Yangxuan Liu ◽  
Jason M. Schmidt

AbstractA shift to more ecologically based farming practices would improve the sustainability and economic stability of agricultural systems. Habitat management in and around agricultural fields can provide stable environments that aid in the proliferation of natural enemy communities that moderate pest populations and injury. Winter cover crops offer a potentially cost-effective approach to improving habitat that supports natural enemy communities early in the growing season. We investigated the effects of winter cover crops including cereal rye (Secale cereal L.) and crimson clover (Trifolium incarnatum L.) on the abundance and diversity of natural enemies, key pest populations, biological control services, and cotton yield. Winter cover crops were established on 0.4 ha replicated field plots in the fall of 2017 and 2018. Suction sampling during each cotton development stage demonstrated that a rye cover crop promoted greater abundance and diversity of natural enemy communities in early cotton stages. Extensive leaf sampling of seedling cotton showed that cover crops significantly reduced thrips infestations. Furthermore, stink bug boll injury decreased on plots prepared with a rye cover compared to cotton lacking this additional habitat. Combining end of season yield results and management practices with an economic analysis of the costs of production, the value of cotton grown into a cover crop was cost competitive with conventional (no cover) cotton production. These results suggest that conventional growers utilizing cover crops could reduce insecticide inputs through natural reductions in pest pressure, and overall do not incur additional production costs.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


1958 ◽  
Vol 22 (2) ◽  
pp. 181-184 ◽  
Author(s):  
W. J. Flocker ◽  
J. A. Vomocil ◽  
M. T. Vittum

Sign in / Sign up

Export Citation Format

Share Document