scholarly journals Incorporating Landslide Spatial Information and Correlated Features among Conditioning Factors for Landslide Susceptibility Mapping

2021 ◽  
Vol 13 (11) ◽  
pp. 2166
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Mei Yang ◽  
Jingjue Chen ◽  
Tianqiang Liu ◽  
...  

This study proposed a new hybrid model based on the convolutional neural network (CNN) for making effective use of historical datasets and producing a reliable landslide susceptibility map. The proposed model consists of two parts; one is the extraction of landslide spatial information using two-dimensional CNN and pixel windows, and the other is to capture the correlated features among the conditioning factors using one-dimensional convolutional operations. To evaluate the validity of the proposed model, two pure CNN models and the previously used methods of random forest and a support vector machine were selected as the benchmark models. A total of 621 earthquake-triggered landslides in Ludian County, China and 14 conditioning factors derived from the topography, geological, hydrological, geophysical, land use and land cover data were used to generate a geospatial dataset. The conditioning factors were then selected and analyzed by a multicollinearity analysis and the frequency ratio method. Finally, the trained model calculated the landslide probability of each pixel in the study area and produced the resultant susceptibility map. The results indicated that the hybrid model benefitted from the features extraction capability of the CNN and achieved high-performance results in terms of the area under the receiver operating characteristic curve (AUC) and statistical indices. Moreover, the proposed model had 6.2% and 3.7% more improvement than the two pure CNN models in terms of the AUC, respectively. Therefore, the proposed model is capable of accurately mapping landslide susceptibility and providing a promising method for hazard mitigation and land use planning. Additionally, it is recommended to be applied to other areas of the world.

2020 ◽  
Vol 42 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Dang Quang Thanh ◽  
Duy Huu Nguyen ◽  
Indra Prakash ◽  
Abolfazl Jaafari ◽  
Viet -Tien Nguyen ◽  
...  

Landslide susceptibility mapping of the city of Da Lat, which is located in the landslide prone area of Lam Dong province of Central Vietnam region, was carried out using GIS based frequency ratio (FR) method. There are number of methods available but FR method is simple and widely used method for landslide susceptibility mapping. In the present study, eight topographical and geo-environmental landslide-conditioning factors were used including slope, elevation, land use, weathering crust, soil, lithology, distance to geology features, and stream density in conjunction with 70 past landslide locations. The results show that 6.27% of the area is in the very low susceptibility area, 21.03% in the low susceptibility area, 27.09% in the moderate susceptibility area and 27.41% of the area is in the high susceptibility zone and 18.21% in the very high susceptibility zone. The landslide susceptibility map produced in this study helps to assist decision makers in proper land use management and planning.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1402 ◽  
Author(s):  
Nohani ◽  
Moharrami ◽  
Sharafi ◽  
Khosravi ◽  
Pradhan ◽  
...  

Landslides are the most frequent phenomenon in the northern part of Iran, which cause considerable financial and life damages every year. One of the most widely used approaches to reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and selecting the proper conditioning factors. The current study is aimed at comparing four bivariate models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly, for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect, curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from the road, the slope angle, and land use were determined to construct the spatial database. From the results of multicollinearity, it was concluded that no collinearity existed between the 10 considered conditioning factors in the occurrence of landslides. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the highest AUC, was the most accurate method among the four implemented methods in identifying the regions at risk of future landslides in the study area. The outcomes of this research are useful and essential for the government, planners, decision makers, researchers, and general land-use planners in the study area.


2021 ◽  
Vol 13 (2) ◽  
pp. 238
Author(s):  
Zhice Fang ◽  
Yi Wang ◽  
Gonghao Duan ◽  
Ling Peng

This study presents a new ensemble framework to predict landslide susceptibility by integrating decision trees (DTs) with the rotation forest (RF) ensemble technique. The proposed framework mainly includes four steps. First, training and validation sets are randomly selected according to historical landslide locations. Then, landslide conditioning factors are selected and screened by the gain ratio method. Next, several training subsets are produced from the training set and a series of trained DTs are obtained by using a DT as a base classifier couple with different training subsets. Finally, the resultant landslide susceptibility map is produced by combining all the DT classification results using the RF ensemble technique. Experimental results demonstrate that the performance of all the DTs can be effectively improved by integrating them with the RF ensemble technique. Specifically, the proposed ensemble methods achieved the predictive values of 0.012–0.121 higher than the DTs in terms of area under the curve (AUC). Furthermore, the proposed ensemble methods are better than the most popular ensemble methods with the predictive values of 0.005–0.083 in terms of AUC. Therefore, the proposed ensemble framework is effective to further improve the spatial prediction of landslides.


2021 ◽  
Vol 10 (2) ◽  
pp. 93
Author(s):  
Wei Xie ◽  
Xiaoshuang Li ◽  
Wenbin Jian ◽  
Yang Yang ◽  
Hongwei Liu ◽  
...  

Landslide susceptibility mapping (LSM) could be an effective way to prevent landslide hazards and mitigate losses. The choice of conditional factors is crucial to the results of LSM, and the selection of models also plays an important role. In this study, a hybrid method including GeoDetector and machine learning cluster was developed to provide a new perspective on how to address these two issues. We defined redundant factors by quantitatively analyzing the single impact and interactive impact of the factors, which was analyzed by GeoDetector, the effect of this step was examined using mean absolute error (MAE). The machine learning cluster contains four models (artificial neural network (ANN), Bayesian network (BN), logistic regression (LR), and support vector machines (SVM)) and automatically selects the best one for generating LSM. The receiver operating characteristic (ROC) curve, prediction accuracy, and the seed cell area index (SCAI) methods were used to evaluate these methods. The results show that the SVM model had the best performance in the machine learning cluster with the area under the ROC curve of 0.928 and with an accuracy of 83.86%. Therefore, SVM was chosen as the assessment model to map the landslide susceptibility of the study area. The landslide susceptibility map demonstrated fit with landslide inventory, indicated the hybrid method is effective in screening landslide influences and assessing landslide susceptibility.


2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.


2021 ◽  
Vol 16 (4) ◽  
pp. 521-528
Author(s):  
Nguyen Trung Kien ◽  
The Viet Tran ◽  
Vy Thi Hong Lien ◽  
Pham Le Hoang Linh ◽  
Nguyen Quoc Thanh ◽  
...  

Tinh Tuc town, Cao Bang province, Vietnam is prone to landslides due to the complexity of its climatic, geological, and geomorphological conditions. In this study, in order to produce a landslide susceptibility map, the modified analytical hierarchy process and landslide susceptibility analysis methods were used together with the layers, including: landslide inventory, slope, weathering crust, water storage, geology, land use, and distance from the road. In the study area, 98% of landslides occurred in highly or completely weathered units. Geology, land use, and water storage data layers were found to be important factors that are closely related with the occurrence of landslides. Although the weight of the “distance from the road” factor has a low value, the weight of layer “<100 m” has a high value. Therefore, the landslide susceptibility index very high is concentrated along the roads. For the validation of the predicted result, the landslide susceptibility map was compared with the landslide inventory map containing 47 landslides. The outcome shows that about 90% of these landslides fall into very high susceptibility zones.


2013 ◽  
Vol 13 (1) ◽  
pp. 28-40

A methodology for landslide susceptibility assessment to delineate landslide prone areas is presented using factor analysis and fuzzy membership functions and Geographic Information Systems (GIS). A landslide inventory of 51 landslides was created in the mountainous part of Xanthi prefecture (North Greece) and the associated conditioning factors were determined for each landslide by field work. Six conditioning factors were evaluated: slope angle, slope aspect, land use, geology, distance to faults and topographical elevation. Fuzzy membership functions were defined for each factor using the landslide frequency data. Factor analysis provided weights (i.e., importance for landslide occurrences) for each one of the above conditioning factors, indicating the most important factors as geology and slope angle. An overlay and index method was adopted to produce the landslide susceptibility map. In this map 96% of the observed landslides are located in very high and high susceptibility zones, indicating a suitable approach for landslide susceptibility mapping.


2019 ◽  
Vol 11 (22) ◽  
pp. 6323 ◽  
Author(s):  
Pham ◽  
Prakash ◽  
Chen ◽  
Ly ◽  
Ho ◽  
...  

The main objective of this study is to propose a novel hybrid model of a sequential minimal optimization and support vector machine (SMOSVM) for accurate landslide susceptibility mapping. For this task, one of the landslide prone areas of Vietnam, the Mu Cang Chai District located in Yen Bai Province was selected. In total, 248 landslide locations and 15 landslide-affecting factors were selected for landslide modeling and analysis. Predictive capability of SMOSVM was evaluated and compared with other landslide models, namely a hybrid model of the cascade generalization optimization-based support vector machine (CGSVM), individual models, such as support vector machines (SVM) and naïve Bayes trees (NBT). For validation, different quantitative criteria such as statistical based methods and area under the receiver operating characteristic curve (AUC) technique were used. Results of the study show that the SMOSVM model (AUC = 0.824) has the highest performance for landslide susceptibility mapping, followed by CGSVM (AUC = 0.815), SVM (AUC = 0.804), and NBT (AUC = 0.800) models, respectively. Thus, the proposed novel SMOSVM model is a promising method for better landslide susceptibility mapping and prediction, which can be applied also in other landslide prone areas.


2020 ◽  
Vol 10 (16) ◽  
pp. 5640
Author(s):  
Jingyu Yao ◽  
Shengwu Qin ◽  
Shuangshuang Qiao ◽  
Wenchao Che ◽  
Yang Chen ◽  
...  

Accurate and timely landslide susceptibility mapping (LSM) is essential to effectively reduce the risk of landslide. In recent years, deep learning has been successfully applied to landslide susceptibility assessment due to the strong ability of fitting. However, in actual applications, the number of labeled samples is usually not sufficient for the training component. In this paper, a deep neural network model based on semi-supervised learning (SSL-DNN) for landslide susceptibility is proposed, which makes full use of a large number of spatial information (unlabeled data) with limited labeled data in the region to train the mode. Taking Jiaohe County in Jilin Province, China as an example, the landslide inventory from 2000 to 2017 was collected and 12 metrological, geographical, and human explanatory factors were compiled. Meanwhile, supervised models such as deep neural network (DNN), support vector machine (SVM), and logistic regression (LR) were implemented for comparison. Then, the landslide susceptibility was plotted and a series of evaluation tools such as class accuracy, predictive rate curves (AUC), and information gain ratio (IGR) were calculated to compare the prediction of models and factors. Experimental results indicate that the proposed SSL-DNN model (AUC = 0.898) outperformed all the comparison models. Therefore, semi-supervised deep learning could be considered as a potential approach for LSM.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2292 ◽  
Author(s):  
Vali Vakhshoori ◽  
Hamid Reza Pourghasemi ◽  
Mohammad Zare ◽  
Thomas Blaschke

The aim of this study was to apply data mining algorithms to produce a landslide susceptibility map of the national-scale catchment called Bandar Torkaman in northern Iran. As it was impossible to directly use the advanced data mining methods due to the volume of data at this scale, an intermediate approach, called normalized frequency-ratio unique condition units (NFUC), was devised to reduce the data volume. With the aid of this technique, different data mining algorithms such as fuzzy gamma (FG), binary logistic regression (BLR), backpropagation artificial neural network (BPANN), support vector machine (SVM), and C5 decision tree (C5DT) were employed. The success and prediction rates of the models, which were calculated by receiver operating characteristic curve, were 0.859 and 0.842 for FG, 0.887 and 0.855 for BLR, 0.893 and 0.856 for C5DT, 0.891 and 0.875 for SVM, and 0.896 and 0.872 for BPANN that showed the highest validation rates as compared with the other methods. The proposed approach of NFUC proved highly efficient in data volume reduction, and therefore the application of computationally demanding algorithms for large areas with voluminous data was feasible.


Sign in / Sign up

Export Citation Format

Share Document