scholarly journals Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes

2021 ◽  
Vol 13 (11) ◽  
pp. 2196
Author(s):  
Frédéric Frappart ◽  
Fabien Blarel ◽  
Ibrahim Fayad ◽  
Muriel Bergé-Nguyen ◽  
Jean-François Crétaux ◽  
...  

Radar altimetry is now commonly used to provide long-term monitoring of inland water levels in complement to or for replacing disappearing in situ networks of gauge stations. Recent improvements in tracking and acquisition modes improved the quality the water retrievals. The newly implemented Open Loop mode is likely to increase the number of monitored water bodies owing to the use of an a priori elevation, especially in hilly and mountainous areas. The novelty of this study is to provide a comprehensive evaluation of the performances of the past and current radar altimetry missions according to their acquisition (Low Resolution Mode or Synthetic Aperture Radar) and tracking (close or open loop) modes, and acquisition frequency (Ku or Ka) in a mountainous area where tracking losses of the signal are likely to occur, as well as of the recently launched ICESat-2 and GEDI lidar missions. To do so, we evaluate the quality of water level retrievals from most radar altimetry missions launched after 1995 over eight lakes in Switzerland, using the recently developed ALtimetry Time Series software, to compare the performances of the new tracking and acquisition modes and also the impact of the frequency used. The combination of the Open Loop tracking mode with the Synthetic Aperture Radar acquisition mode on SENTINEL-3A and B missions outperforms the classical Low Resolution Mode of the other missions with a lake observability greater than 95%, an almost constant bias of (−0.17 ± 0.04) m, a RMSE generally lower than 0.07 m and a R most of the times higher than 0.85 when compared to in situ gauge records. To increase the number of lakes that can be monitored and the temporal sampling of the water level retrievals, data acquired by lidar altimetry missions were also considered. Very accurate results were also obtained with ICESat-2 data with RMSE lower than 0.06 and R higher than 0.95 when compared to in situ water levels. An almost constant bias (0.42 ± 0.03) m was also observed. More contrasted results were obtained using GEDI. As these data were available on a shorter time period, more analyses are necessary to determine their potential for retrieving water levels.

2020 ◽  
Author(s):  
Cecile M. M. Kittel ◽  
Liguang Jiang ◽  
Christian Tøttrup ◽  
Peter Bauer-Gottwein

Abstract. Sentinel-3 is the first satellite altimeter to operate in Synthetic Aperture Radar (SAR) mode and in open-loop tracking mode nearly globally. Both features are expected to improve the ability of the altimeters to observe inland water bodies. In this study we evaluate the possibility to extract river water surface elevation (WSE) at catchment level from Sentinel-3A and Sentinel-3B radar altimetry, using Level-1b and Level-2 data from two public platforms. The objectives of the study are to evaluate the density of valuable observations and establish a WSE monitoring network. Additionally, we demonstrate the potential application of Sentinel-3 for monitoring river interactions with wetlands and floodplains. In the Zambezi basin, 175 virtual stations (VS) contain useful WSE information in both datasets, far exceeding the number of VS available in standard databases. The RMSD is between 2.7 cm and 31.2 cm at six in-situ stations and the VS reflect the observed WSE climatology throughout the basin. Additional VS are available in both the Copernicus Open Access Hub and GPOD (Grid Processing on Demand), highlighting the value of considering multiple processing options. In particular, we show that the processing options available on GPOD strongly affect the number of useful VS; in particular, extending the size of the receiving window, considerably improved data at 13 Sentinel-3 VS. The number of VS delivering usable data increased after the Open-Loop Tracking Command (OLTC) on-board Sentinel-3A was updated. However, the open-loop tracking mode poses two new challenges: correct on-board elevation information is crucial, and steep changes in the receiving window position can have detrimental effects on the WSE observations. Finally, we extract Sentinel-3 observations over key wetlands in the Zambezi basin. We show that clear seasonal patterns are captured in the Sentinel-3 WSE, reflecting flooding events in the floodplains. These results highlight the potential of using Sentinel-3 as a SWOT (Surface Water and Ocean Topography) surrogate while awaiting the mission launch. The results show the benefit of the high-resolution Synthetic Aperture Radar (SAR) altimeter, as well as the benefits and disadvantages of the open-loop tracking mode.


2020 ◽  
Vol 12 (8) ◽  
pp. 1353 ◽  
Author(s):  
Edward Park ◽  
Eder Merino ◽  
Quinn W. Lewis ◽  
Eric O. Lindsey ◽  
Xiankun Yang

Global measurements of reservoir water levels are crucial for understanding Earth’s hydrological dynamics, especially in the context of global industrialization and climate change. Although radar altimetry has been used to measure the water level of some reservoirs with high accuracy, it is not yet feasible unless the water body is sufficiently large or directly located at the satellite’s nadir. This study proposes a gauging method applicable to a wide range of reservoirs using Sentinel–1 Synthetic Aperture Radar data and a digital elevation model (DEM). The method is straightforward to implement and involves estimating the mean slope–corrected elevation of points along the reservoir shoreline. We test the model on six case studies and show that the estimated water levels are accurate to around 10% error on average of independently verified values. This study represents a substantial step toward the global gauging of lakes and reservoirs of all sizes and in any location where a DEM is available.


2014 ◽  
Vol 150 ◽  
pp. 66-81 ◽  
Author(s):  
Jin-Woo Kim ◽  
Zhong Lu ◽  
John W. Jones ◽  
C.K. Shum ◽  
Hyongki Lee ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 1986 ◽  
Author(s):  
Alessandra Budillon ◽  
Michele Crosetto ◽  
Angel Johnsy ◽  
Oriol Monserrat ◽  
Vrinda Krishnakumar ◽  
...  

In this paper, persistent scatterer interferometry and Synthetic Aperture Radar (SAR) tomography have been applied to Sentinel-1 data for urban monitoring. The paper analyses the applicability of SAR tomography to Sentinel-1 data, which is not granted, due to the reduced range and azimuth resolutions and the low resolution in elevation. In a first part of the paper, two implementations of the two techniques are described. In the experimental part, the two techniques are used in parallel to process the same Sentinel-1 data over two test areas. An intercomparison of the results from persistent scatterer interferometry and SAR tomography is carried out, comparing the main parameters estimated by the two techniques. Finally, the paper addresses the complementarity of the two techniques, and in particular it assesses the increase of measurement density that can be achieved by adding the double scatterers from SAR tomography to the persistent scatterer interferometry measurements.


2020 ◽  
Vol 12 (23) ◽  
pp. 3970
Author(s):  
Antonio Sánchez-Román ◽  
Ananda Pascual ◽  
Marie-Isabelle Pujol ◽  
Guillaume Taburet ◽  
Marta Marcos ◽  
...  

The quality of the Data Unification and Altimeter Combination System (DUACS) Sentinel-3A altimeter data in the coastal area of the European seas is investigated through a comparison with in situ tide gauge measurements. The comparison was also conducted using altimetry data from Jason-3 for inter-comparison purposes. We found that Sentinel-3A improved the root mean square differences (RMSD) by 13% with respect to the Jason-3 mission. In addition, the variance in the differences between the two datasets was reduced by 25%. To explain the improved capture of Sea Level Anomaly by Sentinel-3A in the coastal band, the impact of the measurement noise on the synthetic aperture radar altimeter, the distance to the coast, and Long Wave Error correction applied on altimetry data were checked. The results confirmed that the synthetic aperture radar altimeter instrument onboard the Sentinel-3A mission better solves the signal in the coastal band. Moreover, the Long Wave Error processing contributes to reduce the errors in altimetry, enhancing the consistency between the altimeter and in situ datasets.


2019 ◽  
Vol 11 (23) ◽  
pp. 2780 ◽  
Author(s):  
Hannah Vickers ◽  
Eirik Malnes ◽  
Kjell-Arild Høgda

Monitoring water storage in lakes and reservoirs is critical to water resource management, especially in a changing climate. Satellite microwave remote sensing offers a weather and light-independent solution for mapping water cover over large scales. We have used 13 years of synthetic aperture radar (SAR) data from three different sensors (Sentinel-1, RADARSAT-2, and Envisat advanced synthetic aperture radar (ASAR)) to develop a method for mapping surface water cover and thereby estimating the lake water extent (LWE). The method uses the unsupervised K-means clustering algorithm together with specific post-processing techniques to create binary maps of the water area. We have specifically tested and validated the method at Altevatn, a medium-sized arctic lake in Northern Norway, by using in-situ measurements of the water level. The multi-sensor SAR LWE time series were used in conjunction with the water level measurements to derive the lake hypsometry while at the same time quantifying the accuracy of our method. For Altevatn lake we estimated LWE with a root mean squared error (RMSE) of 0.89 km2 or 1.4% of the mean LWE, while the inferred lake water level (LWL) was associated with an RMSE of 0.40 m, or 2.5% of the maximum annual variation. We foresee that there is potential to further develop the algorithm by generalizing its use to other lakes worldwide and automating the process such that near real-time monitoring of LWE may be possible.


2021 ◽  
Author(s):  
Carlos García-Lanchares ◽  
Miguel Marchamalo ◽  
Candela Sancho

Este documento presenta la formulación y primeros pasos de un proyecto de Doctorado Industrial, desarrollado en elmarco del proyecto Kuk ahpán que tiene como objetivo comprender, monitorear y modelar procesos tectónicos a escalalitosférica en Centroamérica. Para ello, un equipo internacional de seis países (Nicaragua, Costa Rica, El Salvador,Guatemala, Noruega y España) trabaja integrando la investigación en diversas técnicas e ingenierías Geofísicas, con elobjetivo de actualizar los Mapas de Riesgo Sísmico de la Región, un insumo crítico. para los códigos de seguridad yconstrucción. El proyecto de doctorado propuesto se enmarca en la investigación y desarrollo de tecnologías para prevenirlos riesgos geológicos naturales e inducidos que afectan a ciudades e infraestructuras en países altamente vulnerables,utilizando la tecnología DInSAR (Differential Interferometry with Synthetic Aperture Radar) optimizada por la startupDetektia Earth Surface Monitoring en colaboración con la Universidad Politécnica de Madrid. La interferometría diferencialde radar de apertura sintética es una técnica basada en el procesamiento y análisis de series largas de imágenes de radarde apertura sintética. Esta tecnología proporciona registros (desde 1992) y movimientos actualizados en cualquiersuperficie en cualquier parte del mundo sin necesidad de instrumentación terrestre, con precisiones de alrededor de 1 mm/ año (velocidad). En este contexto, el radar satelital proporciona información valiosa sobre áreas muy grandes quecomplementan el trabajo de campo y la instrumentación in situ. Primero, comenzamos integrando datos DInSAR condiversos datos geofísicos como batimetría, geomagnetismo, gravimetría, perfiles sísmicos… para mapear completamentela falla Swan sobre Honduras y Guatemala. Usamos esta tecnología para abordar el riesgo sísmico sobre la falla y áreascercanas. En un segundo paso, aplicaremos esta evaluación de riesgo sísmico (incluyendo amenazas naturales yantropogénicas) en ciudades e infraestructuras críticas en Centroamérica.


Sign in / Sign up

Export Citation Format

Share Document