scholarly journals A Preliminary Damage Assessment Using Dual Path Synthetic Aperture Radar Analysis for the M 6.4 Petrinja Earthquake (2020), Croatia

2021 ◽  
Vol 13 (12) ◽  
pp. 2267
Author(s):  
Sadra Karimzadeh ◽  
Masashi Matsuoka

On 29 December 2020, an earthquake with a magnitude of M 6.4 hit the central part of Croatia. The earthquake resulted in casualties and damaged buildings in the town of Petrinja (~6 km away from the epicenter) and surrounding areas. This study aims to characterize ground displacement and to estimate the location of damaged areas following the Petrinja earthquake using six synthetic aperture radar (SAR) images (C-band) acquired from both ascending and descending orbits of the Sentinel-1 mission. Phase information from both the ascending (Sentinel-1A) and descending (Sentinel-1B) datasets, acquired from SAR interferometry (InSAR), is used for estimation of ground displacement. For damage mapping, we use histogram information along with the RGB method to visualize the affected areas. In sparsely damaged areas, we also propose a method based on multivariate alteration detection (MAD) and naive Bayes (NB), in which pre-seismic and co-seismic coherence maps and geocoded intensity maps are the main independent variables, together with elevation and displacement maps. For training, approximately 70% of the data are employed and the rest of the data are used for validation. The results show that, despite the limitations of C-band SAR images in densely vegetated areas, the overall accuracy of MAD+NB is ~68% compared with the results from the Copernicus Emergency Management Service (CEMS).

2020 ◽  
Vol 20 (5) ◽  
pp. 1463-1468
Author(s):  
Diego Cerrai ◽  
Qing Yang ◽  
Xinyi Shen ◽  
Marika Koukoula ◽  
Emmanouil N. Anagnostou

Abstract. In this communication, we present application of the automated near-real-time (NRT) system called RAdar-Produced Inundation Diary (RAPID) to European Space Agency Sentinel-1 synthetic aperture radar (SAR) images to produce flooding maps for Hurricane Dorian in the northern Bahamas. RAPID maps, released 2 d after the event, show that coastal flooding in the Bahamas reached areas located more than 10 km inland, covering more than 3000 km2 of continental area. RAPID flood estimates from subsequent SAR images show the recession of the flood across the islands and present high agreement scores when compared to Copernicus Emergency Management Service (Copernicus EMS) estimates.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


Landslides ◽  
2021 ◽  
Author(s):  
Norma Davila Hernandez ◽  
Alexander Ariza Pastrana ◽  
Lizeth Caballero Garcia ◽  
Juan Carlos Villagran de Leon ◽  
Antulio Zaragoza Alvarez ◽  
...  

2001 ◽  
Vol 25 (2) ◽  
pp. 159-177 ◽  
Author(s):  
H. Balzter

A synthetic aperture radar (SAR) is an active sensor transmitting pulses of polarized electromagnetic waves and receiving the backscattered radiation. SAR sensors at different wavelengths and with different polarimetric capabilities are being used in remote sensing of the earth. The value of an analysis of backscattered energy alone is limited due to ambiguities in the possible ecological factor configurations causing the signal. From two SAR images taken from similar viewing positions with a short time-lag, interference between the two waves can be observed. By subtracting the two phases of the signals, it is feasible to eliminate the random contribution of the scatterers to the phase. The interferometric correlation and the interferometric phase contain additional information on the three-dimensional structure of the scattering elements in the imaged area. A brief review of SAR sensors is given, followed by an outline of the physical foundations of SAR interferometry and the practical data-processing steps involved. An overview of applications of InSAR to forest mapping and monitoring is given, covering tree-bole volume and biomass, forest types and land cover, fire scars, forest thermal state and forest canopy height.


2013 ◽  
Vol 184 (4-5) ◽  
pp. 441-450 ◽  
Author(s):  
Yu-Yia Wu ◽  
Jyr-Ching Hu ◽  
Geng-Pei Lin ◽  
Chung-Pai Chang ◽  
Hsin Tung ◽  
...  

Abstract Persistent scatterers SAR interferometry (PS-InSAR) was employed to monitor surface deformation in and around the Tainan tableland using 20 advanced synthetic aperture radar (ASAR) images from the ENVISAT satellite taken during the period from 2005 May 19 to 2008 September 25. In our study, we have found that the uplift rate of the northern Tainan tableland is faster than the southern tableland. The slant range displacement (SRD) rate for the area north along the precise leveling array is about 5 to 10 mm/yr with respect to the western edge of the Tainan tableland, whereas the SRD rate for the area south of the leveling array is about 1 to 5 mm/yr. In addition, the uplifted area extends eastward to the Tawan lowland with a maximum SRD rate of nearly 10 mm/yr, which is almost the same as the rate of the Tainan tableland. Results of this study differ from those suggested in previous researches that employed ERS-1/2 radar images taken from 1996 to 1999 and the differential interferometry synthetic aperture radar (D-InSAR) technique. Our findings indicated that the Tawan lowland no longer subsides with respect to the western edge of the Tainan tableland, and that both northern and southern areas are experiencing uplift.


Sign in / Sign up

Export Citation Format

Share Document