scholarly journals Multiscale Information Fusion for Hyperspectral Image Classification Based on Hybrid 2D-3D CNN

2021 ◽  
Vol 13 (12) ◽  
pp. 2268
Author(s):  
Hang Gong ◽  
Qiuxia Li ◽  
Chunlai Li ◽  
Haishan Dai ◽  
Zhiping He ◽  
...  

Hyperspectral images are widely used for classification due to its rich spectral information along with spatial information. To process the high dimensionality and high nonlinearity of hyperspectral images, deep learning methods based on convolutional neural network (CNN) are widely used in hyperspectral classification applications. However, most CNN structures are stacked vertically in addition to using a onefold size of convolutional kernels or pooling layers, which cannot fully mine the multiscale information on the hyperspectral images. When such networks meet the practical challenge of a limited labeled hyperspectral image dataset—i.e., “small sample problem”—the classification accuracy and generalization ability would be limited. In this paper, to tackle the small sample problem, we apply the semantic segmentation function to the pixel-level hyperspectral classification due to their comparability. A lightweight, multiscale squeeze-and-excitation pyramid pooling network (MSPN) is proposed. It consists of a multiscale 3D CNN module, a squeezing and excitation module, and a pyramid pooling module with 2D CNN. Such a hybrid 2D-3D-CNN MSPN framework can learn and fuse deeper hierarchical spatial–spectral features with fewer training samples. The proposed MSPN was tested on three publicly available hyperspectral classification datasets: Indian Pine, Salinas, and Pavia University. Using 5%, 0.5%, and 0.5% training samples of the three datasets, the classification accuracies of the MSPN were 96.09%, 97%, and 96.56%, respectively. In addition, we also selected the latest dataset with higher spatial resolution, named WHU-Hi-LongKou, as the challenge object. Using only 0.1% of the training samples, we could achieve a 97.31% classification accuracy, which is far superior to the state-of-the-art hyperspectral classification methods.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5191
Author(s):  
Jin Zhang ◽  
Fengyuan Wei ◽  
Fan Feng ◽  
Chunyang Wang

Convolutional neural networks provide an ideal solution for hyperspectral image (HSI) classification. However, the classification effect is not satisfactory when limited training samples are available. Focused on “small sample” hyperspectral classification, we proposed a novel 3D-2D-convolutional neural network (CNN) model named AD-HybridSN (Attention-Dense-HybridSN). In our proposed model, a dense block was used to reuse shallow features and aimed at better exploiting hierarchical spatial–spectral features. Subsequent depth separable convolutional layers were used to discriminate the spatial information. Further refinement of spatial–spectral features was realized by the channel attention method and spatial attention method, which were performed behind every 3D convolutional layer and every 2D convolutional layer, respectively. Experiment results indicate that our proposed model can learn more discriminative spatial–spectral features using very few training data. In Indian Pines, Salinas and the University of Pavia, AD-HybridSN obtain 97.02%, 99.59% and 98.32% overall accuracy using only 5%, 1% and 1% labeled data for training, respectively, which are far better than all the contrast models.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5276 ◽  
Author(s):  
Fan Feng ◽  
Shuangting Wang ◽  
Chunyang Wang ◽  
Jin Zhang

Every pixel in a hyperspectral image contains detailed spectral information in hundreds of narrow bands captured by hyperspectral sensors. Pixel-wise classification of a hyperspectral image is the cornerstone of various hyperspectral applications. Nowadays, deep learning models represented by the convolutional neural network (CNN) provides an ideal solution for feature extraction, and has made remarkable achievements in supervised hyperspectral classification. However, hyperspectral image annotation is time-consuming and laborious, and available training data is usually limited. Due to the “small-sample problem”, CNN-based hyperspectral classification is still challenging. Focused on the limited sample-based hyperspectral classification, we designed an 11-layer CNN model called R-HybridSN (Residual-HybridSN) from the perspective of network optimization. With an organic combination of 3D-2D-CNN, residual learning, and depth-separable convolutions, R-HybridSN can better learn deep hierarchical spatial–spectral features with very few training data. The performance of R-HybridSN is evaluated over three public available hyperspectral datasets on different amounts of training samples. Using only 5%, 1%, and 1% labeled data for training in Indian Pines, Salinas, and University of Pavia, respectively, the classification accuracy of R-HybridSN is 96.46%, 98.25%, 96.59%, respectively, which is far better than the contrast models.


2021 ◽  
Vol 13 (18) ◽  
pp. 3592
Author(s):  
Yifei Zhao ◽  
Fengqin Yan

Hyperspectral image (HSI) classification is one of the major problems in the field of remote sensing. Particularly, graph-based HSI classification is a promising topic and has received increasing attention in recent years. However, graphs with pixels as nodes generate large size graphs, thus increasing the computational burden. Moreover, satisfactory classification results are often not obtained without considering spatial information in constructing graph. To address these issues, this study proposes an efficient and effective semi-supervised spectral-spatial HSI classification method based on sparse superpixel graph (SSG). In the constructed sparse superpixels graph, each vertex represents a superpixel instead of a pixel, which greatly reduces the size of graph. Meanwhile, both spectral information and spatial structure are considered by using superpixel, local spatial connection and global spectral connection. To verify the effectiveness of the proposed method, three real hyperspectral images, Indian Pines, Pavia University and Salinas, are chosen to test the performance of our proposal. Experimental results show that the proposed method has good classification completion on the three benchmarks. Compared with several competitive superpixel-based HSI classification approaches, the method has the advantages of high classification accuracy (>97.85%) and rapid implementation (<10 s). This clearly favors the application of the proposed method in practice.


2018 ◽  
Vol 10 (8) ◽  
pp. 1271 ◽  
Author(s):  
Feng Gao ◽  
Qun Wang ◽  
Junyu Dong ◽  
Qizhi Xu

Hyperspectral image classification has been acknowledged as the fundamental and challenging task of hyperspectral data processing. The abundance of spectral and spatial information has provided great opportunities to effectively characterize and identify ground materials. In this paper, we propose a spectral and spatial classification framework for hyperspectral images based on Random Multi-Graphs (RMGs). The RMG is a graph-based ensemble learning method, which is rarely considered in hyperspectral image classification. It is empirically verified that the semi-supervised RMG deals well with small sample setting problems. This kind of problem is very common in hyperspectral image applications. In the proposed method, spatial features are extracted based on linear prediction error analysis and local binary patterns; spatial features and spectral features are then stacked into high dimensional vectors. The high dimensional vectors are fed into the RMG for classification. By randomly selecting a subset of features to create a graph, the proposed method can achieve excellent classification performance. The experiments on three real hyperspectral datasets have demonstrated that the proposed method exhibits better performance than several closely related methods.


Author(s):  
Q. Yuan ◽  
Y. Ang ◽  
H. Z. M. Shafri

Abstract. Hyperspectral image classification (HSIC) is a challenging task in remote sensing data analysis, which has been applied in many domains for better identification and inspection of the earth surface by extracting spectral and spatial information. The combination of abundant spectral features and accurate spatial information can improve classification accuracy. However, many traditional methods are based on handcrafted features, which brings difficulties for multi-classification tasks due to spectral intra-class heterogeneity and similarity of inter-class. The deep learning algorithm, especially the convolutional neural network (CNN), has been perceived promising feature extractor and classification for processing hyperspectral remote sensing images. Although 2D CNN can extract spatial features, the specific spectral properties are not used effectively. While 3D CNN has the capability for them, but the computational burden increases as stacking layers. To address these issues, we propose a novel HSIC framework based on the residual CNN network by integrating the advantage of 2D and 3D CNN. First, 3D convolutions focus on extracting spectral features with feature recalibration and refinement by channel attention mechanism. The 2D depth-wise separable convolution approach with different size kernels concentrates on obtaining multi-scale spatial features and reducing model parameters. Furthermore, the residual structure optimizes the back-propagation for network training. The results and analysis of extensive HSIC experiments show that the proposed residual 2D-3D CNN network can effectively extract spectral and spatial features and improve classification accuracy.


Author(s):  
A. Kianisarkaleh ◽  
H. Ghassemian ◽  
F. Razzazi

Feature extraction plays a key role in hyperspectral images classification. Using unlabeled samples, often unlimitedly available, unsupervised and semisupervised feature extraction methods show better performance when limited number of training samples exists. This paper illustrates the importance of selecting appropriate unlabeled samples that used in feature extraction methods. Also proposes a new method for unlabeled samples selection using spectral and spatial information. The proposed method has four parts including: PCA, prior classification, posterior classification and sample selection. As hyperspectral image passes these parts, selected unlabeled samples can be used in arbitrary feature extraction methods. The effectiveness of the proposed unlabeled selected samples in unsupervised and semisupervised feature extraction is demonstrated using two real hyperspectral datasets. Results show that through selecting appropriate unlabeled samples, the proposed method can improve the performance of feature extraction methods and increase classification accuracy.


2019 ◽  
Vol 11 (11) ◽  
pp. 1325 ◽  
Author(s):  
Chen Chen ◽  
Yi Ma ◽  
Guangbo Ren

Deep learning models, especially the convolutional neural networks (CNNs), are very active in hyperspectral remote sensing image classification. In order to better apply the CNN model to hyperspectral classification, we propose a CNN model based on Fletcher–Reeves algorithm (F–R CNN), which uses the Fletcher–Reeves (F–R) algorithm for gradient updating to optimize the convergence performance of the model in classification. In view of the fact that there are fewer optional training samples in practical applications, we further propose a method of increasing the number of samples by adding a certain degree of perturbed samples, which can also test the anti-interference ability of classification methods. Furthermore, we analyze the anti-interference and convergence performance of the proposed model in terms of different training sample data sets, different batch training sample numbers and iteration time. In this paper, we describe the experimental process in detail and comprehensively evaluate the proposed model based on the classification of CHRIS hyperspectral imagery covering coastal wetlands, and further evaluate it on a commonly used hyperspectral image benchmark dataset. The experimental results show that the accuracy of the two models after increasing training samples and adjusting the number of batch training samples is improved. When the number of batch training samples is continuously increased to 350, the classification accuracy of the proposed method can still be maintained above 80.7%, which is 2.9% higher than the traditional one. And its time consumption is less than that of the traditional one while ensuring classification accuracy. It can be concluded that the proposed method has anti-interference ability and outperforms the traditional CNN in terms of batch computing adaptability and convergence speed.


2021 ◽  
Vol 13 (23) ◽  
pp. 4921
Author(s):  
Jinling Zhao ◽  
Lei Hu ◽  
Yingying Dong ◽  
Linsheng Huang

Hyperspectral images (HSIs) have been widely used in many fields of application, but it is still extremely challenging to obtain higher classification accuracy, especially when facing a smaller number of training samples in practical applications. It is very time-consuming and laborious to acquire enough labeled samples. Consequently, an efficient hybrid dense network was proposed based on a dual-attention mechanism, due to limited training samples and unsatisfactory classification accuracy. The stacked autoencoder was first used to reduce the dimensions of HSIs. A hybrid dense network framework with two feature-extraction branches was then established in order to extract abundant spectral–spatial features from HSIs, based on the 3D and 2D convolutional neural network models. In addition, spatial attention and channel attention were jointly introduced in order to achieve selective learning of features derived from HSIs. The feature maps were further refined, and more important features could be retained. To improve computational efficiency and prevent the overfitting, the batch normalization layer and the dropout layer were adopted. The Indian Pines, Pavia University, and Salinas datasets were selected to evaluate the classification performance; 5%, 1%, and 1% of classes were randomly selected as training samples, respectively. In comparison with the REF-SVM, 3D-CNN, HybridSN, SSRN, and R-HybridSN, the overall accuracy of our proposed method could still reach 96.80%, 98.28%, and 98.85%, respectively. Our results show that this method can achieve a satisfactory classification performance even in the case of fewer training samples.


Author(s):  
T. Alipourfard ◽  
H. Arefi

Abstract. Convolutional Neural Networks (CNNs) as a well-known deep learning technique has shown a remarkable performance in visual recognition applications. However, using such networks in the area of hyperspectral image classification is a challenging and time-consuming process due to the high dimensionality and the insufficient training samples. In addition, Generative Adversarial Networks (GANs) has attracted a lot of attentions in order to generate virtual training samples. In this paper, we present a new classification framework based on integration of multi-channel CNNs and new architecture for generator and discriminator of GANs to overcome Small Sample Size (SSS) problem in hyperspectral image classification. Further, in order to reduce the computational cost, the methods related to the reduction of subspace dimension were proposed to obtain the dominant feature around the training sample to generate meaningful training samples from the original one. The proposed framework overcomes SSS and overfitting problem in classifying hyperspectral images. Based on the experimental results on real and well-known hyperspectral benchmark images, our proposed strategy improves the performance compared to standard CNNs and conventional data augmentation strategy. The overall classification accuracy in Pavia University and Indian Pines datasets was 99.8% and 94.9%, respectively.


2021 ◽  
pp. 1-13
Author(s):  
Xiaoyan Wang ◽  
Jianbin Sun ◽  
Qingsong Zhao ◽  
Yaqian You ◽  
Jiang Jiang

It is difficult for many classic classification methods to consider expert experience and classify small-sample datasets well. The evidential reasoning rule (ER rule) classifier can solve these problems. The ER rule has strong processing and comprehensive analysis abilities for diversified mixed information and can solve problems with expert experience effectively. Moreover, the initial parameters of the classifier constructed based on the ER rule can be set according to empirical knowledge instead of being trained by a large number of samples, which can help the classifier classify small-sample datasets well. However, the initial parameters of the ER rule classifier need to be optimized, and choosing the best optimization algorithm is still a challenge. Considering these problems, the ER rule classifier with an optimization operator recommendation is proposed in this paper. First, the initial ER rule classifier is constructed based on training samples and expert experience. Second, the adjustable parameters are optimized, in which the optimization operator recommendation strategy is applied to select the best algorithm by partial samples, and then experiments with full samples are carried out. Finally, a case study on a turbofan engine degradation simulation dataset is carried out, and the results indicate that the ER rule classifier has a higher classification accuracy than other classic classifiers, which demonstrates the capability and effectiveness of the proposed ER rule classifier with an optimization operator recommendation.


Sign in / Sign up

Export Citation Format

Share Document