scholarly journals Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study

2021 ◽  
Vol 13 (13) ◽  
pp. 2493
Author(s):  
Giulia D’Angelo ◽  
Mirko Piersanti ◽  
Alessio Pignalberi ◽  
Igino Coco ◽  
Paola De Michelis ◽  
...  

The storm onset on 7 September 2017, triggered several variations in the ionospheric electron density, causing severe phase fluctuations at polar latitudes in both hemispheres. In addition, although quite rare at high latitudes, clear amplitude scintillations were recorded by two Global Navigation Satellite System receivers during the main phase of the storm. This work attempted to investigate the physical mechanisms triggering the observed amplitude scintillations, with the aim of identifying the conditions favoring such events. We investigated the ionospheric background and other conditions that prevailed when the irregularities formed and moved, following a multi-observations approach. Specifically, we combined information from scintillation parameters and recorded by multi-constellation (GPS, GLONASS and Galileo) receivers located at Concordia station (75.10°S, 123.35°E) and SANAE IV base (71.67°S, 2.84°W), with measurements acquired by the Special Sensor Ultraviolet Spectrographic Imager on board the Defense Meteorological Satellite Program satellites, the Super Dual Auroral Radar Network, the Swarm constellation and ground-based magnetometers. Besides confirming the high degree of complexity of the ionospheric dynamics, our multi-instrument observation identified the physical conditions that likely favor the occurrence of amplitude scintillations at high latitudes. Results suggest that the necessary conditions for the observation of this type of scintillation in high-latitude regions are high levels of ionization and a strong variability of plasma dynamics. Both of these conditions are typically featured during high solar activity.

2020 ◽  
Author(s):  
Claudia Borries ◽  
Arthur Amaral Ferreira ◽  
Chao Xiong ◽  
Renato Alves Borges ◽  
Jens Mielich ◽  
...  

<p>Large Scale Travelling Ionospheric Disturbances (LSTIDs) are a frequent phenomenon during ionospheric storms, indicating strong electrodynamic processes in high latitudes. LSTIDs are signatures of Atmospheric Gravity Waves (AGW) observed in the changes of the electron density in the ionosphere. During ionospheric storms, large scale AGWs are often generated in the vicinity of the auroral region, where sudden strong heating processes take place.</p><p>Many LSTIDs are observed during the ionosphere storm during the September 2017 Space Weather event. In this presentation, the LSTID occurrence on 8<sup>th</sup> September 2017 is analysed in more detail, based on a TID detection method using ground based Global Navigation Satellite System (GNSS) measurements. Fast LSTIDs are observed in midlatitudes between 0-3 UT and 13-16 UT. Slow LSTIDs are observed between 3-12 UT. A significant strong wave-like TEC perturbation occurred in high latitudes at noon, which vanished at around 50°N. A strong single LSTID in mid-latitudes generated in high latitudes around 18 UT. Consulting IMAGE magnetometer data, ionosonde measurements and Swarm field aligned current measurements, strong heating processes, the extension of the Auroral oval and unusual electrodynamic processes are discussed as source mechanisms for these LSTIDs.</p>


2018 ◽  
Vol 36 (5) ◽  
pp. 1161-1170 ◽  
Author(s):  
Sylvain M. Ahoua ◽  
John Bosco Habarulema ◽  
Olivier K. Obrou ◽  
Pierre J. Cilliers ◽  
Zacharie K. Zaka

Abstract. In order to provide a scientific base to the NeQuick characterisation under disturbed conditions, the comparison of its performance for quiet and storm days is investigated in the southern mid-latitude. This investigation was realised using the two versions of the NeQuick model which were adapted to local and storm-specific response by using the critical frequency of the F2 layer (foF2) and the propagation factor (M(3000)F2) derived from three South African ionosonde measurements, Hermanus (34.40∘ S, 19.20∘ E), Grahamstown (33.30∘ S, 26.50∘ E) and Louisvale (28.50∘ S, 21.20∘ E). The number of free electrons contained within a 1 m squared column section known as total electron content (TEC) is a widely used ionospheric parameter to estimate its impact on the radio signal passing through. In this study, the TEC derived from the adapted NeQuick version is compared with observed TEC derived from Global Navigation Satellite System (GNSS) data from co-located or nearby GNSS dual-frequency receivers. The Hermanus K-index is used to select all the disturbed days (K-index ≥ 5) upon moving from low to high solar activity (from 2009 to 2012). For each disturbed day, a quiet reference day of the same month was chosen for the investigation. The study reveals that the NeQuick model shows similar reliability for both magnetic quiet and disturbed conditions, but its accuracy is affected by the solar activity. The model is much better for moderate solar activity epochs (2009 and 2010), while it exhibits a discrepancy with observations during high solar activity epochs. For instance in Hermanus, the difference between GPS TEC and NeQuick TEC (ΔTEC) is generally lower than 10 TECu in 2009, and it sometimes reaches 20 TECu in 2011 and 2012. It is also noticed that NeQuick 2 is more accurate than NeQuick 1, with an improvement in TEC estimation more significant for the high solar activity epochs. The improvement realised in the latest version of NeQuick is more than 15 % and sometimes reaches 50 %. Keywords. Ionosphere (mid-latitude ionosphere; modelling and forecasting)


2021 ◽  
Vol 13 (23) ◽  
pp. 4835
Author(s):  
Jia Luo ◽  
Jialiang Hou ◽  
Xiaohua Xu

The spatial–temporal distribution of the global gravity wave (GW) potential energy (Ep) at the lower stratosphere of 20–35 km is studied using the dry temperature profiles from multi- Global Navigation Satellite System (GNSS) radio occultation (RO) missions, including CHAMP, COSMIC, GRACE, and METOP-A/B/C, during the 14 years from 2007 to 2020, based on which the linear trends of the GW Ep and the responses of GW Ep to solar activity, quasi biennial oscillation (QBO), and El Niño-Southern Oscillation (ENSO) are analyzed using the multivariate linear regression (MLR) method. It is found that the signs and the magnitudes of the trends of GW Ep during each month vary at different altitude ranges and over different latitudes. At 25–35 km of the middle and high latitudes, GW Ep values generally show significant negative trends in almost all months, and the values of the negative trends become smaller in the regions closer to the poles. The distribution of the deseasonalized trends in the monthly zonal-mean GW Ep demonstrates that the GW activities are generally declining from 2007 to 2020 over the globe. The responses of GW Ep to solar activity are found to be mostly positive at 20–35 km over the globe, and the comparison between the distribution pattern of the deseasonalized trends in the GW activities and that of the responses of GWs to solar activity indicates that the sharp decline in solar activity from 2015 to 2017 might contribute to the overall attenuation of gravity wave activity during the 14 years. Significant negative responses of GW Ep to QBO are found at 30–35 km over 30° S–25° N, and the negative responses extend to the mid and high latitudes in the southern hemisphere at 20–30 km. The responses of GW Ep to QBO change to be significantly positive at 20–30 km over 15° S–15° N, which demonstrates that the zonal wind field should be the main factor affecting the GW activities at 20–30 km over the tropics. The responses of GW Ep at 20–35 km to ENSO are found to be positive over 15° S–15° N, while at 30–35 km over 15° N–30° N and at 20–35 km near 50° N, significant negative responses of GW Ep to ENSO exist.


2018 ◽  
Vol 940 (10) ◽  
pp. 2-6
Author(s):  
J.A. Younes ◽  
M.G. Mustafin

The issue of calculating the plane rectangular coordinates using the data obtained by the satellite observations during the creation of the geodetic networks is discussed in the article. The peculiarity of these works is in conversion of the coordinates into the Mercator projection, while the plane coordinate system on the base of Gauss-Kruger projection is used in Russia. When using the technology of global navigation satellite system, this task is relevant for any point (area) of the Earth due to a fundamentally different approach in determining the coordinates. The fact is that satellite determinations are much more precise than the ground coordination methods (triangulation and others). In addition, the conversion to the zonal coordinate system is associated with errors; the value at present can prove to be completely critical. The expediency of using the Mercator projection in the topographic and geodetic works production at low latitudes is shown numerically on the basis of model calculations. To convert the coordinates from the geocentric system with the Mercator projection, a programming algorithm which is widely used in Russia was chosen. For its application under low-latitude conditions, the modification of known formulas to be used in Saudi Arabia is implemented.


2021 ◽  
Vol 13 (14) ◽  
pp. 8054
Author(s):  
Artur Janowski ◽  
Rafał Kaźmierczak ◽  
Cezary Kowalczyk ◽  
Jakub Szulwic

Knowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image analysis methods and computational performance, it is possible to create solutions for automatic fruit counting based on registered digital images. The pilot study aims to confirm the state of knowledge in the use of three methods (You Only Look Once—YOLO, Viola–Jones—a method based on the synergy of morphological operations of digital imagesand Hough transformation) of image recognition for apple detecting and counting. The study compared the results of three image analysis methods that can be used for counting apple fruits. They were validated, and their results allowed the recommendation of a method based on the YOLO algorithm for the proposed solution. It was based on the use of mass accessible devices (smartphones equipped with a camera with the required accuracy of image acquisition and accurate Global Navigation Satellite System (GNSS) positioning) for orchard owners to count growing apples. In our pilot study, three methods of counting apples were tested to create an automatic system for estimating apple yields in orchards. The test orchard is located at the University of Warmia and Mazury in Olsztyn. The tests were carried out on four trees located in different parts of the orchard. For the tests used, the dataset contained 1102 apple images and 3800 background images without fruits.


2021 ◽  
pp. 1-16
Author(s):  
Hong Hu ◽  
Xuefeng Xie ◽  
Jingxiang Gao ◽  
Shuanggen Jin ◽  
Peng Jiang

Abstract Stochastic models are essential for precise navigation and positioning of the global navigation satellite system (GNSS). A stochastic model can influence the resolution of ambiguity, which is a key step in GNSS positioning. Most of the existing multi-GNSS stochastic models are based on the GPS empirical model, while differences in the precision of observations among different systems are not considered. In this paper, three refined stochastic models, namely the variance components between systems (RSM1), the variances of different types of observations (RSM2) and the variances of observations for each satellite (RSM3) are proposed based on the least-squares variance component estimation (LS-VCE). Zero-baseline and short-baseline GNSS experimental data were used to verify the proposed three refined stochastic models. The results show that, compared with the traditional elevation-dependent model (EDM), though the proposed models do not significantly improve the ambiguity resolution success rate, the positioning precision of the three proposed models has been improved. RSM3, which is more realistic for the data itself, performs the best, and the precision at elevation mask angles 20°, 30°, 40°, 50° can be improved by 4⋅6%, 7⋅6%, 13⋅2%, 73⋅0% for L1-B1-E1 and 1⋅1%, 4⋅8%, 16⋅3%, 64⋅5% for L2-B2-E5a, respectively.


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Christina Oikonomou ◽  
Haris Haralambous ◽  
Sergey Pulinets ◽  
Aakriti Khadka ◽  
Shukra R. Paudel ◽  
...  

The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 Mw, 7.1 Mw and 6.6 Mw during 8 and 19 September 2017 and 21 January 2016 respectively), while ionospheric variations during the entire year 2017 prior to 37 earthquakes are also examined. In particular, Total Electron Content (TEC) retrieved from Global Navigation Satellite System (GNSS) networks and Atmospheric Chemical Potential (ACP) variations extracted from an atmospheric model are analyzed by performing statistical and spectral analysis on TEC measurements with the aid of Global Ionospheric Maps (GIMs), Ionospheric Precursor Mask (IPM) methodology and time series and regional maps of ACP. It is found that both large and short scale ionospheric anomalies occurring from few hours to a few days prior to the seismic events may be linked to the forthcoming events and most of them are nearly concurrent with atmospheric anomalies happening during the same day. This analysis also highlights that even in low-latitude areas it is possible to discern pre-earthquake ionospheric disturbances possibly linked with the imminent seismic events.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


Sign in / Sign up

Export Citation Format

Share Document