scholarly journals Workflow for Off-Site Bridge Inspection Using Automatic Damage Detection-Case Study of the Pahtajokk Bridge

2021 ◽  
Vol 13 (14) ◽  
pp. 2665
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

For the inspection of structures, particularly bridges, it is becoming common to replace humans with autonomous systems that use unmanned aerial vehicles (UAV). In this paper, a framework for autonomous bridge inspection using a UAV is proposed with a four-step workflow: (a) data acquisition with an efficient UAV flight path, (b) computer vision comprising training, testing and validation of convolutional neural networks (ConvNets), (c) point cloud generation using intelligent hierarchical dense structure from motion (DSfM), and (d) damage quantification. This workflow starts with planning the most efficient flight path that allows for capturing of the minimum number of images required to achieve the maximum accuracy for the desired defect size, then followed by bridge and damage recognition. Three types of autonomous detection are used: masking the background of the images, detecting areas of potential damage, and pixel-wise damage segmentation. Detection of bridge components by masking extraneous parts of the image, such as vegetation, sky, roads or rivers, can improve the 3D reconstruction in the feature detection and matching stages. In addition, detecting damaged areas involves the UAV capturing close-range images of these critical regions, and damage segmentation facilitates damage quantification using 2D images. By application of DSfM, a denser and more accurate point cloud can be generated for these detected areas, and aligned to the overall point cloud to create a digital model of the bridge. Then, this generated point cloud is evaluated in terms of outlier noise, and surface deviation. Finally, damage that has been detected is quantified and verified, based on the point cloud generated using the Terrestrial Laser Scanning (TLS) method. The results indicate this workflow for autonomous bridge inspection has potential.

2021 ◽  
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

<p>In bridge inspection, vertical displacement is a relevant parameter for both short and long-term health monitoring. Assessing change in deflections could also simplify the assessment work for inspectors. Recent developments in digital camera technology and photogrammetry software enables point cloud with colour information (RGB values) to be generated. Thus, close range photogrammetry offers the potential of monitoring big and small-scale damages by point clouds. The current paper aims to monitor geometrical deviations in Pahtajokk Bridge, Northern Sweden, using an optical data acquisition technique. The bridge in this study is scanned two times by almost one year a part. After point cloud generation the datasets were compared to detect geometrical deviations. First scanning was carried out by both close range photogrammetry (CRP) and terrestrial laser scanning (TLS), while second scanning was performed by CRP only. Analyzing the results has shown the potential of CRP in bridge inspection.</p>


2019 ◽  
Vol 11 (5) ◽  
pp. 580 ◽  
Author(s):  
Xianglei Liu ◽  
Peipei Wang ◽  
Zhao Lu ◽  
Kai Gao ◽  
Hui Wang ◽  
...  

This paper presents a practical framework for urban bridge damage detection and analysis by using three key techniques: terrestrial laser scanning (TLS), ground-based microwave interferometry, and permanent scatterer interferometry synthetic aperture radar (PS-InSAR). The proposed framework was tested on the Beishatan Bridge in Beijing, China. Firstly, a Digital Surface Model (DSM) of the lower surface of the bridge was constructed based on the point cloud generated by using TLS to obtain the potential damage area. Secondly, the dynamic time-series displacement of the potential damage area was acquired by ground-based microwave interferometry, and the Extreme-Point Symmetric Mode Decomposition (ESMD) method was applied to detect damages by the use of signal decomposition and instantaneous frequency calculation. Lastly, the PS-InSAR technique was applied to obtain the surface deformation around Beishatan Bridge by using COSMO-SkyMed images with a ground resolution of 3 m × 3 m, and finally, we analyzed the causes of bridge damage. The experimental results showed that the proposed framework can effectively obtain the potential damage area of the bridge by the DSM from the point cloud by TLS and further judge whether the bridge was damaged by the ESMD method, based on the time-series displacement data. The results also showed that the subway shield construction may be the reason for damage to Beishatan Bridge.


Author(s):  
N. Ahmad Fuad ◽  
A. R. Yusoff ◽  
Z. Ismail ◽  
Z. Majid

<p><strong>Abstract.</strong> The aim of the research is to evaluate the performance of the point cloud registration methods using mobile laser scanning data. The point cloud registration methods involved in this research are match bounding-box centres and iterative closest point (ICP). The research began with the two epoch’s mobile laser scanning survey using a Phoenix AL-3-32 system. At the same time, the stereo images of the study area were acquired using UAV Photogrammetric method. Both two epoch point cloud datasets were gone through the pre and post-processing stages to produce the cleaned and geo-referenced point clouds data. The data were then gone through the two registration methods and four Cloud-to-Cloud (C2C) distance methods. The 3D surface deviation results obtained from mobile laser scanning data was compared with the 3D surface deviation results from UAV data that undergoes the same registration and C2C distance computation methods. The study area involved in the research is an active landslide area that was located at Kulim Hi-Tech residential area in Kedah state, Malaysia. The study area exposed to the movement of the land which caused cracked to the buildings and drainages. The findings show that the ICP registration becomes the most suitable method to register point clouds dataset that was acquired using mobile laser scanning system. Among the four C2C distance computation methods that was involved in the testing, the least square plane method was the best method to calculate the distance between two sets of point clouds datasets which in turn gave the best results in the process of detecting the movement of the land in the study area.</p>


2018 ◽  
Vol 10 (12) ◽  
pp. 1891 ◽  
Author(s):  
Zhenwei Shi ◽  
Zhizhong Kang ◽  
Yi Lin ◽  
Yu Liu ◽  
Wei Chen

Mobile Laser Scanning (MLS) point cloud data contains rich three-dimensional (3D) information on road ancillary facilities such as street lamps, traffic signs and utility poles. Automatically recognizing such information from point cloud would provide benefits for road safety inspection, ancillary facilities management and so on, and can also provide basic information support for the construction of an information city. This paper presents a method for extracting and classifying pole-like objects (PLOs) from unstructured MLS point cloud data. Firstly, point cloud is preprocessed to remove outliers, downsample and filter ground points. Then, the PLOs are extracted from the point cloud by spatial independence analysis and cylindrical or linear feature detection. Finally, the PLOs are automatically classified by 3D shape matching. The method was tested based on two point clouds with different road environments. The completeness, correctness and overall accuracy were 92.7%, 97.4% and 92.3% respectively in Data I. For Data II, that provided by International Society for Photogrammetry and Remote Sensing Working Group (ISPRS WG) III/5 was also used to test the performance of the method, and the completeness, correctness and overall accuracy were 90.5%, 97.1% and 91.3%, respectively. Experimental results illustrate that the proposed method can effectively extract and classify PLOs accurately and effectively, which also shows great potential for further applications of MLS point cloud data.


2020 ◽  
Vol 961 (7) ◽  
pp. 47-55
Author(s):  
A.G. Yunusov ◽  
A.J. Jdeed ◽  
N.S. Begliarov ◽  
M.A. Elshewy

Laser scanning is considered as one of the most useful and fast technologies for modelling. On the other hand, the size of scan results can vary from hundreds to several million points. As a result, the large volume of the obtained clouds leads to complication at processing the results and increases the time costs. One way to reduce the volume of a point cloud is segmentation, which reduces the amount of data from several million points to a limited number of segments. In this article, we evaluated effect on the performance, the accuracy of various segmentation methods and the geometric accuracy of the obtained models at density changes taking into account the processing time. The results of our experiment were compared with reference data in a form of comparative analysis. As a conclusion, some recommendations for choosing the best segmentation method were proposed.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2021 ◽  
Vol 10 (6) ◽  
pp. 367
Author(s):  
Simoni Alexiou ◽  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Emmanouil Psomiadis ◽  
...  

Analysis of two small semi-mountainous catchments in central Evia island, Greece, highlights the advantages of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) based change detection methods. We use point clouds derived by both methods in two sites (S1 & S2), to analyse the effects of a recent wildfire on soil erosion. Results indicate that topsoil’s movements in the order of a few centimetres, occurring within a few months, can be estimated. Erosion at S2 is precisely delineated by both methods, yielding a mean value of 1.5 cm within four months. At S1, UAV-derived point clouds’ comparison quantifies annual soil erosion more accurately, showing a maximum annual erosion rate of 48 cm. UAV-derived point clouds appear to be more accurate for channel erosion display and measurement, while the slope wash is more precisely estimated using TLS. Analysis of Point Cloud time series is a reliable and fast process for soil erosion assessment, especially in rapidly changing environments with difficult access for direct measurement methods. This study will contribute to proper georesource management by defining the best-suited methodology for soil erosion assessment after a wildfire in Mediterranean environments.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3416
Author(s):  
Pawel Burdziakowski ◽  
Angelika Zakrzewska

The continuous and intensive development of measurement technologies for reality modelling with appropriate data processing algorithms is currently being observed. The most popular methods include remote sensing techniques based on reflected-light digital cameras, and on active methods in which the device emits a beam. This research paper presents the process of data integration from terrestrial laser scanning (TLS) and image data from an unmanned aerial vehicle (UAV) that was aimed at the spatial mapping of a complicated steel structure, and a new automatic structure extraction method. We proposed an innovative method to minimize the data size and automatically extract a set of points (in the form of structural elements) that is vital from the perspective of engineering and comparative analyses. The outcome of the research was a complete technology for the acquisition of precise information with regard to complex and high steel structures. The developed technology includes such elements as a data integration method, a redundant data elimination method, integrated photogrammetric data filtration and a new adaptive method of structure edge extraction. In order to extract significant geometric structures, a new automatic and adaptive algorithm for edge extraction from a random point cloud was developed and presented herein. The proposed algorithm was tested using real measurement data. The developed algorithm is able to realistically reduce the amount of redundant data and correctly extract stable edges representing the geometric structures of a studied object without losing important data and information. The new algorithm automatically self-adapts to the received data. It does not require any pre-setting or initial parameters. The detection threshold is also adaptively selected based on the acquired data.


2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Francisco Mauro ◽  
Andrew T. Hudak ◽  
Patrick A. Fekety ◽  
Bryce Frank ◽  
Hailemariam Temesgen ◽  
...  

Airborne laser scanning (ALS) acquisitions provide piecemeal coverage across the western US, as collections are organized by local managers of individual project areas. In this study, we analyze different factors that can contribute to developing a regional strategy to use information from completed ALS data acquisitions and develop maps of multiple forest attributes in new ALS project areas in a rapid manner. This study is located in Oregon, USA, and analyzes six forest structural attributes for differences between: (1) synthetic (i.e., not-calibrated), and calibrated predictions, (2) parametric linear and semiparametric models, and (3) models developed with predictors computed for point clouds enclosed in the areas where field measurements were taken, i.e., “point-cloud predictors”, and models developed using predictors extracted from pre-rasterized layers, i.e., “rasterized predictors”. Forest structural attributes under consideration are aboveground biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load. Results from our study indicate that semiparametric models perform better than parametric models if no calibration is performed. However, the effect of the calibration is substantial in reducing the bias of parametric models but minimal for the semiparametric models and, once calibrations are performed, differences between parametric and semiparametric models become negligible for all responses. In addition, minimal differences between models using point-cloud predictors and models using rasterized predictors were found. We conclude that the approach that applies semiparametric models and rasterized predictors, which represents the easiest workflow and leads to the most rapid results, is justified with little loss in accuracy or precision even if no calibration is performed.


Sign in / Sign up

Export Citation Format

Share Document