scholarly journals Performance of Camera-Based Vibration Monitoring Systems in Input-Output Modal Identification Using Shaker Excitation

2021 ◽  
Vol 13 (17) ◽  
pp. 3471
Author(s):  
Maksat Kalybek ◽  
Mateusz Bocian ◽  
Wojciech Pakos ◽  
Jacek Grosel ◽  
Nikolaos Nikitas

Despite significant advances in the development of high-resolution digital cameras in the last couple of decades, their potential remains largely unexplored in the context of input-output modal identification. However, these remote sensors could greatly improve the efficacy of experimental dynamic characterisation of civil engineering structures. To this end, this study provides early evidence of the applicability of camera-based vibration monitoring systems in classical experimental modal analysis using an electromechanical shaker. A pseudo-random and sine chirp excitation is applied to a scaled model of a cable-stayed bridge at varying levels of intensity. The performance of vibration monitoring systems, consisting of a consumer-grade digital camera and two image processing algorithms, is analysed relative to that of a system based on accelerometry. A full set of modal parameters is considered in this process, including modal frequency, damping, mass and mode shapes. It is shown that the camera-based vibration monitoring systems can provide high accuracy results, although their effective application requires consideration of a number of issues related to the sensitivity, nature of the excitation force, and signal and image processing. Based on these findings, suggestions for best practice are provided to aid in the implementation of camera-based vibration monitoring systems in experimental modal analysis.

This article presents a critical review of recent research done on crack identification and localization in structural beams using numerical and experimental modal analysis. Crack identification and localization in beams are very crucial in various engineering applications such as ship propeller shafts, aircraft wings, gantry cranes, and Turbo machinery blades. It is necessary to identify the damage in time; otherwise, there may be serious consequences like a catastrophic failure of the engineering structures. Experimental modal analysis is used to study the vibration characteristics of structures like natural frequency, damping and mode shapes. The modal parameters like natural frequency and mode shapes of undamaged and damaged beams are different. Based on this reason, structural damage can be detected, especially in beams. From the review of various research papers, it is identified that a lot of the research done on beams with open transverse crack. Crack location is identified by tracking variation in natural frequencies of a healthy and cracked beam


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1239
Author(s):  
Maksat Kalybek ◽  
Mateusz Bocian ◽  
Nikolaos Nikitas

Image-based optical vibration measurement is an attractive alternative to the conventional measurement of structural dynamics predominantly relying on accelerometry. Although various optical vibration monitoring systems are now readily available, their performance is currently not well defined, especially in the context of experimental modal analysis. To this end, this study provides some of the first evidence of the capability of optical vibration monitoring systems in modal identification using input–output measurements. A comparative study is conducted on a scaled model of a 3D building frame set in a laboratory environment. The dynamic response of the model to an impulse excitation from an instrumented hammer, and an initial displacement, is measured by means of five optical motion capture systems. These include commercial and open-source systems based on laser Doppler velocimetry, fiducial markers and marker-less pattern recognition. The performance of these systems is analysed against the data obtained with a set of high-precision accelerometers. It is shown that the modal parameters identified from each system are not always equivalent, and that each system has limitations inherent to its design. Informed by these findings, a guidance for the deployment of the considered optical motion capture systems is given, aiding in their choice and implementation for structural vibration monitoring.


2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


2013 ◽  
Vol 486 ◽  
pp. 36-41 ◽  
Author(s):  
Róbert Huňady ◽  
František Trebuňa ◽  
Martin Hagara ◽  
Martin Schrötter

Experimental modal analysis is a relatively young part of dynamics, which deals with the vibration modes identification of machines or their parts. Its development has started since the beginning of the eighties, when the computers hardware equipment has improved and the fast Fourier transform (FFT) could be used for the results determination. Nowadays it provides an uncountable set of vibration analysis possibilities starting with conventional contact transducers of acceleration and ending with modern noncontact optical methods. In this contribution we mention the use of high-speed digital image correlation by experimental determination of mode shapes and modal frequencies. The aim of our work is to create a program application called Modan 3D enabling the performing of experimental modal analysis and operational modal analysis. In this paper the experimental modal analysis of a thin steel sample performed with Q-450 Dantec Dynamics is described. In Modan 3D the experiment data were processed and the vibration modes were determined. The reached results were verified by PULSE modulus specialized for mechanical vibration analysis.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880869 ◽  
Author(s):  
Yu-Jia Hu ◽  
Wei-Gong Guo ◽  
Cheng Jiang ◽  
Yun-Lai Zhou ◽  
Weidong Zhu

Bayesian operational modal analysis and modal strain energy are employed for determining the damage and looseness of bolted joints in beam structures under ambient excitation. With this ambient modal identification technique, mode shapes of a damaged beam structure with loosened bolted connections are obtained based on Bayesian theory. Then, the corresponding modal strain energy can be calculated based on the mode shapes. The modal strain energy of the structure with loosened bolted connections is compared with the theoretical one without bolted joints to define a damage index. This approach uses vibration-based nondestructive testing of locations and looseness of bolted joints in beam structures with different boundary conditions by first obtaining modal parameters from ambient vibration data. The damage index is then used to identify locations and looseness of bolted joints in beam structures with single or multiple bolted joints. Furthermore, the comparison between damage indexes due to different looseness levels of bolted connections demonstrates a qualitatively proportional relationship.


Author(s):  
Lawrence Virgin ◽  
David Holland

It is relatively well known that axial loads tend to influence lateral stiffness and hence natural frequencies of slender structural components. Tensile forces tend to increase the lateral stiffness and compressive forces tend to reduce lateral stiffness, bringing with it the possibility of buckling. In many practical situations this is a negligible effect. But for very slender structures it can be important, including the effect of self-weight. This paper will focus attention on a form of double cantilever beam system, i.e., two cantilevers sharing a common hub. A differential axial load can be applied to this system via orientation in a gravitational field. We shall neglect the effect of gravity when the beams are in their horizontal orientation from a limited theoretical standpoint. It is of course present in the experiments but the cantilevers are much stiffer in one direction than the other, and the beams are clamped with their stiffer resistance in the vertical direction. The focus of the current paper is on the natural frequencies and mode shapes of a two-beam system from an experimental modal analysis perspective.


2012 ◽  
Vol 19 (5) ◽  
pp. 1071-1083 ◽  
Author(s):  
Christof Devriendt ◽  
Tim De Troyer ◽  
Gert De Sitter ◽  
Patrick Guillaume

During the recent years several new tools have been introduced by the Vrije Universiteit Brussel in the field of Operational Modal Analysis (OMA) such as the transmissibility based approach and the the frequency-domain OMAX concept. One advantage of the transmissibility based approach is that the ambient forces may be coloured (non-white), if they are fully correlated. The main advantage of the OMAX concept is the fact that it combines the advantages of Operational and Experimental Modal Analysis: ambient (unknown) forces as well as artificial (known) forces are processed simultaneously resulting in improved modal parameters. In this paper, the transmissibility based output-only approach is combined with the input/output OMAX concept. This results in a new methodology in the field of operational modal analysis allowing the estimation of (scaled) modal parameters in the presence of arbitrary ambient (unknown) forces and artificial (known) forces.


2019 ◽  
Vol 8 (4) ◽  
pp. 12294-12300

In isolating the ground structure and the above ground structure from seismic loads, a significant device called laminated rubber bearing is usually found in structure. The complexity of the material which is made up from a combination of rubber and steel shim plates in alternate layer, has made it difficult to measure damping value. Damping is a dissipation of energy or energy losses in the vibration of the structure. Measuring the accurate amount of damping is fundamental as damping plays a crucial role in fixing the borderline between stability and instability in structural systems. Therefore, to determine the damping value including dynamic properties in any materials, modal analysis can be used. Hence, the main objective of this research is to determine the Rayleigh’s damping coefficients α and β and to evaluate the performance of the laminated rubber bearing using finite element and experimental modal analysis. Finding shows that, the finite element modal analysis with the addition of Rayleigh’s damping coefficients α and β, shows a good agreement with the experimental modal analysis in term of natural frequencies and mode shapes. Findings show that, the values of natural frequencies reduced when precise Rayleigh’s damping coefficient added in the finite element modal analysis. It can be concluded that both finite element and experimental modal analysis method can be used to estimate the accurate values of damping ratio and to determine the Rayleigh’s damping coefficients α and β as well.


2018 ◽  
Vol 1 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Siva Sankara Babu Chinka ◽  
Balakrishna Adavi ◽  
Srinivasa Rao Putti

In this paper, the dynamic behavior of a cantilever beam without and with crack is observed. An elastic Aluminum cantilever beams having surface crack at various crack positions are considered to analyze dynamically. Crack depth, crack length and crack location are the foremost parameters for describing the health condition of beam in terms of modal parameters such as natural frequency, mode shape and damping ratio. It is crucial to study the influence of crack depth and crack location on modal parameters of the beam for the decent performance and its safety. Crack or damage of structure causes a reduction in stiffness, an intrinsic reduction in resonant frequencies, variation of damping ratios and mode shapes. The broad examination of cantilever beam without crack and with crack has been done using Numerical analysis (Ansys18.0) and experimental modal analysis. To observe the exact higher modes of beam, discretize the beam into small elements. An experimental set up was established for cantilever beam having crack and it was excited by an impact hammer and finally the response was obtained using PCB accelerometer with the help sound and vibration toolkit of NI Lab-view. After obtaining the Frequency response functions (FRFs), the natural frequencies of beam are estimated using peak search method. The effectiveness of experimental modal analysis in terms of natural frequency is validated with numerical analysis results. This paper contains the study of free vibration analysis under the influence of crack at different points along the length of the beam.


Sign in / Sign up

Export Citation Format

Share Document