scholarly journals Approaching Global Instantaneous Precise Positioning with the Dual- and Triple-Frequency Multi-GNSS Decoupled Clock Model

2021 ◽  
Vol 13 (18) ◽  
pp. 3768
Author(s):  
Nacer Naciri ◽  
Sunil Bisnath

Precise Point Positioning (PPP), as a global precise positioning technique, suffers from relatively long convergence times, hindering its ability to be the default precise positioning technique. Reducing the PPP convergence time is a must to reach global precise positions, and doing so in a few minutes to seconds can be achieved thanks to the additional frequencies that are being broadcast by the modernized GNSS constellations. Due to discrepancies in the number of signals broadcast by each satellite/constellation, it is necessary to have a model that can process a mix of signals, depending on availability, and perform ambiguity resolution (AR), a technique that proved necessary for rapid convergence. This manuscript does so by expanding the uncombined Decoupled Clock Model to process and fix ambiguities on up to three frequencies depending on availability for GPS, Galileo, and BeiDou. GLONASS is included as well, without carrier-phase ambiguity fixing. Results show the possibility of consistent quasi-instantaneous global precise positioning through an assessment of the algorithm on a network of global stations, as the 67th percentile solution converges below 10 cm horizontal error within 2 min, compared to 8 min with a triple-frequency solution, showing the importance of having a flexible PPP-AR model frequency-wise. In terms of individual datasets, 14% of datasets converge instantaneously when mixing dual- and triple-frequency measurements, compared to just 0.1% in that of dual-frequency mode without ambiguity resolution. Two kinematic car datasets were also processed, and it was shown that instantaneous centimetre-level positioning with a moving receiver is possible. These results are promising as they only rely on ultra-rapid global satellite products, allowing for instantaneous real-time precise positioning without the need for any local infrastructure or prior knowledge of the receiver’s environment.

2021 ◽  
Author(s):  
Akram Afifi ◽  
Ahmed El-Rabbany

This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.


2020 ◽  
Vol 12 (8) ◽  
pp. 1315
Author(s):  
Shaoming Xin ◽  
Jianghui Geng ◽  
Jiang Guo ◽  
Xiaolin Meng

Rapid precise point positioning ambiguity resolution (PPP-AR) is of great importance to improving precise positioning efficiency. There is an expectation that Galileo multi-frequency (three or more frequencies) data processing will offer a promising way to accelerate PPP-AR. However, the performance of different combination observables out of raw Galileo multi-frequency data is still unclear, and the adverse impacts of missing receiver antenna phase center corrections have not been quantified in detail. We therefore studied uncombined Galileo PPP-AR by contrasting three typical triple-frequency combinations, which are E1/E5a/E5b, E1/E5a/E6, and E1/E5/E6 signals, using 30 days of data from 15 stations across Australia. We carried out triple-frequency PPP-AR by separately applying the official GPS receiver antenna phase centers, as currently employed in most relevant literatures, as well as the pilot Galileo receiver antenna phase centers preliminarily measured by the International GNSS Service. We found that, compared to dual-frequency (E1/E5a) PPP-AR, triple-frequency PPP-AR based on E1/E5a/E5b signals shortened the convergence time by only 7.6%, while those based on E1/E5a/E6 and E1/E5/E6 increased unexpectedly the convergence time by 17.6% and 12.7%, respectively, if the GPS receiver antenna corrections were presumed for Galileo signals. However, after using the pilot Galileo phase center corrections, triple-frequency PPP-AR based on E1/E5a/E5b, E1/E5a/E6, and E1/E5/E6 signals could speed up the convergence on average by about 16.2%, 30.3%, and 17.7%, respectively. Therefore, we demonstrate the critical impact of correct Galileo receiver antenna phase centers on multi-frequency PPP-AR convergences. Moreover, the triple-frequency signal combination E1/E5a/E6 is advantageous over others in achieving rapid triple-frequency Galileo PPP-AR.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3500 ◽  
Author(s):  
Fu Zheng ◽  
Xiaopeng Gong ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Guifei Jing ◽  
...  

Global Navigation Satellite System pseudorange biases are of great importance for precise positioning, timing and ionospheric modeling. The existence of BeiDou Navigation Satellite System (BDS) receiver-related pseudorange biases will lead to the loss of precision in the BDS satellite clock, differential code bias estimation, and other precise applications, especially when inhomogeneous receivers are used. In order to improve the performance of BDS precise applications, two ionosphere-free and geometry-free combinations and ionosphere-free pseudorange residuals are proposed to calibrate the raw receiver-related pseudorange biases of BDS on each frequency. Then, the BDS triple-frequency receiver-related pseudorange biases of seven different manufacturers and twelve receiver models are calibrated. Finally, the effects of receiver-related pseudorange bias are analyzed by BDS single-frequency single point positioning (SPP), single- and dual-frequency precise point positioning (PPP), wide-lane uncalibrated phase delay (UPD) estimation, and ambiguity resolution, respectively. The results show that the BDS SPP performance can be significantly improved by correcting the receiver-related pseudorange biases and the accuracy improvement is about 20% on average. Moreover, the accuracy of single- and dual-frequency PPP is improved mainly due to a faster convergence when the receiver-related pseudorange biases are corrected. On the other hand, the consistency of wide-lane UPD among different stations is improved significantly and the standard deviation of wide-lane UPD residuals is decreased from 0.195 to 0.061 cycles. The average success rate of wide-lane ambiguity resolution is improved about 42.10%.


2021 ◽  
Author(s):  
Akram Afifi ◽  
Ahmed El-Rabbany

This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Fei Liu ◽  
Yang Gao

With the availability of the third civil signal in the Global Positioning System, triple-frequency Precise Point Positioning ambiguity resolution methods have drawn increasing attention due to significantly reduced convergence time. However, the corresponding triple-frequency based precise clock products are not widely available and adopted by applications. Currently, most precise products are generated based on ionosphere-free combination of dual-frequency L1/L2 signals, which however are not consistent with the triple-frequency ionosphere-free carrier-phase measurements, resulting in inaccurate positioning and unstable float ambiguities. In this study, a GPS triple-frequency PPP ambiguity resolution method is developed using the widely used dual-frequency based clock products. In this method, the interfrequency clock biases between the triple-frequency and dual-frequency ionosphere-free carrier-phase measurements are first estimated and then applied to triple-frequency ionosphere-free carrier-phase measurements to obtain stable float ambiguities. After this, the wide-lane L2/L5 and wide-lane L1/L2 integer property of ambiguities are recovered by estimating the satellite fractional cycle biases. A test using a sparse network is conducted to verify the effectiveness of the method. The results show that the ambiguity resolution can be achieved in minutes even tens of seconds and the positioning accuracy is in decimeter level.


2014 ◽  
Vol 67 (6) ◽  
pp. 1109-1119 ◽  
Author(s):  
Shengyue Ji ◽  
Xiaolong Wang ◽  
Ying Xu ◽  
Zhenjie Wang ◽  
Wu Chen ◽  
...  

Fast high precision relative Global Navigation Satellite System (GNSS) positioning is very important to various applications and ambiguity resolution is a key requirement. It has been a continuing challenge to determine and fix GNSS carrier-phase ambiguity, especially for medium- and long-distance baselines. In past research, with dual-frequency band Global Positioning System (GPS), it is almost impossible for fast ambiguity resolution of medium- and long-distance baselines mainly due to the ionospheric and tropospheric effects. With the launch of the BeiDou system, triple-frequency band GNSS observations are available for the first time. This research aims to test the ambiguity resolution performance with BeiDou triple-frequency band observations. In this research, two mathematical models are compared: zenith tropospheric delay as an unknown parameter versus corrected tropospheric delay. The ambiguity resolution performance is investigated in detail with BeiDou observations. Different distance baselines are tested: 45 km, 70 km and 100 km and the performances are investigated with different elevation cut-off angles. Also the performance with BeiDou alone and combined BeiDou and GPS are compared. Experimental results clearly show that with practical observations of triple-frequency bands, ambiguity of medium- or long-distance baselines can be fixed. The results also show that: the performance of ambiguity resolution with an elevation cutoff angle of 20° is much better than that of 15°; The performance with tropospheric effect corrected is slightly better than that with tropospheric effect as an estimated parameter; Dual-frequency band GPS observations will benefit ambiguity resolution of integrated BeiDou and GPS.


2014 ◽  
Vol 67 (3) ◽  
pp. 385-401 ◽  
Author(s):  
Dennis Odijk ◽  
Balwinder S. Arora ◽  
Peter J.G. Teunissen

This contribution covers precise (cm-level) relative Global Navigation Satellite System (GNSS) positioning for which the baseline length can reach up to a few hundred km. Carrier-phase ambiguity resolution is required to obtain this high positioning accuracy within manageable observation time spans. However, for such long baselines, the differential ionospheric delays hamper fast ambiguity resolution as based on current dual-frequency Global Positioning System (GPS). It is expected that the modernization of GPS towards a triple-frequency system, as well as the development of Galileo towards a full constellation will be beneficial in speeding up long-baseline ambiguity resolution. In this article we will predict ambiguity resolution success rates for GPS+Galileo for a 250 km baseline based on the ambiguity variance matrix, where the Galileo constellation is simulated by means of Yuma almanac data. From our studies it can be concluded that ambiguity resolution will likely become faster (less than ten minutes) in the case of GPS+Galileo when based on triple-frequency data of both systems, however much shorter times to fix the ambiguities (one-two minutes) can be expected when only a subset of ambiguities is fixed instead of the complete vector (partial ambiguity resolution).


2015 ◽  
Vol 5 (1) ◽  
pp. 53-60 ◽  
Author(s):  
S. Nistor ◽  
A. S. Buda

Abstract Because of the dynamics of the GPS technique used in different domains like geodesy, near real-time GPS meteorology, geodynamics, the precise point positioning (PPP) becomes more than a powerful method for determining the position, or the delay caused by the atmosphere. The main idea of this method is that we need only one receiver – preferably that have dual frequencies pseudorange and carrier-phase capabilities – to obtain the position. Because we are using only one receiver the majority of the residuals that are eliminated in double differencing method, we have to estimate them in PPP. The development of the PPP method allows us, to use precise satellite clock estimates, and precise orbits, resulting in a much more efficient way to deal with the disadvantages of this technique, like slow convergence time, or ambiguity resolution. Because this two problem are correlated, to achieve fast convergence we need to resolve the problem of ambiguity resolution. But the accuracy of the PPP results are directly influenced by presence of the uncalibrated phase delays (UPD) originating in the receivers and satellites. In this article we present the GPS errors and biases, the zenith wet delay and the necessary time for obtaining the convergence. The necessary correction are downloaded by using the IGS service.


Sign in / Sign up

Export Citation Format

Share Document