scholarly journals Influence of Scale Effect of Canopy Projection on Understory Microclimate in Three Subtropical Urban Broad-Leaved Forests

2021 ◽  
Vol 13 (18) ◽  
pp. 3786
Author(s):  
Xueyan Gao ◽  
Chong Li ◽  
Yue Cai ◽  
Lei Ye ◽  
Longdong Xiao ◽  
...  

The canopy is the direct receiver and receptor of external environmental variations, and affects the microclimate and energy exchange between the understory and external environment. After autumn leaf fall, the canopy structure of different forests shows remarkable variation, causes changes in the microclimate and is essential for understory vegetation growth. Moreover, the microclimate is influenced by the scale effect of the canopy. However, the difference in influence between different forests remains unclear on a small scale. In this study, we aimed to analyze the influence of the scale effect of canopy projection on understory microclimate in three subtropical broad-leaved forests. Three urban forests: evergreen broad-leaved forest (EBF), deciduous broad-leaved forest (DBF), and mixed evergreen and deciduous broad-leaved forest (MBF) were selected for this study. Sensors for environmental monitoring were used to capture the microclimate data (temperature (T), relative humidity (RH), and light intensity (LI)) for each forest. Terrestrial laser scanning was employed to obtain the canopy projection intensity (CPI) at each sensor location. The results indicate that the influence range of canopy projection on the microclimate was different from stand to stand (5.5, 5, and 3 m). Moreover, there was a strong negative correlation between T and RH, and the time for T and LI to reach a significant correlation in different urban forests was different, as well as the time for RH and LI during the day. Finally, the correlation between CPI and the microclimate showed that canopy projection had the greatest effect on T and RH in MBF, followed by DBF and EBF. In conclusion, our findings confirm that canopy projection can significantly affect understory microclimate. This study provides a reference for the conservation of environmentally sensitive organisms for urban forest management.

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 338
Author(s):  
David Hladnik ◽  
Andrej Kobler ◽  
Janez Pirnat

In the presented research, we studied the forest edge structure of urban and peri-urban forests on the outskirts of Ljubljana (Slovenia) consisting of a number of patches covering the collective surface of 1884 ha. They differ from each other according to the degree of fragmentation and by the share of the interior forest area. On the basis of LiDAR data, we conducted an analysis of the edges of the persistent forest patches and estimated them with regard to the land use they bordered on. The horizontal estimation of forest edges and the changes of forest edges, in the last decades, were estimated using digital orthophoto images of cyclic aerial surveys of Slovenia, from 1975 to 2018. The data, provided by LiDAR, were used to obtain an accurate estimate of forest edges and the metrics of their vertical canopy structure. On the basis of the canopy height model (CHM), we determined the height classes, the heights of the tallest trees, and indices of canopy height diversity (CHD) as variables subjected to a k-means cluster analysis. To determine the forest edge and trees stability, their heights and diameters at breast height (DBH) were measured and their canopy length and h/d (height/diameter) dimension ratios were estimated. In the study area of the Golovec forest patch, more than half of the forest edge segments (56%) border on residential buildings. After the construction of buildings, 54% of the newly formed forest edges developed a high and steep structure. Unfavorable h/d dimension ratio was estimated for 16% of trees, more among the coniferous than among the deciduous trees. Similar characteristics of newly formed forest edges bordering on built-up areas were determined in other sub-urban forest patches, despite the smaller share of such forest edges (19% and 10%, respectively). Tools and methods presented in the research enable the implementation of concrete silvicultural practices in a realistic time period and extend to ensure that adequate forestry measures are taken to minimize possible disturbances.


1996 ◽  
pp. 64-67 ◽  
Author(s):  
Nguen Nghia Thin ◽  
Nguen Ba Thu ◽  
Tran Van Thuy

The tropical seasonal rainy evergreen broad-leaved forest vegetation of the Cucphoung National Park has been classified and the distribution of plant communities has been shown on the map using the relations of vegetation to geology, geomorphology and pedology. The method of vegetation mapping includes: 1) the identifying of vegetation types in the remote-sensed materials (aerial photographs and satellite images); 2) field work to compile the interpretation keys and to characterize all the communities of a study area; 3) compilation of the final vegetation map using the combined information. In the classification presented a number of different level vegetation units have been identified: formation classes (3), formation sub-classes (3), formation groups (3), formations (4), subformations (10) and communities (19). Communities have been taken as mapping units. So in the vegetation map of the National Park 19 vegetation categories has been shown altogether, among them 13 are natural primary communities, and 6 are the secondary, anthropogenic ones. The secondary succession goes through 3 main stages: grassland herbaceous xerophytic vegetation, xerophytic scrub, dense forest.


2012 ◽  
Vol 17 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Jun HE ◽  
Xiuhai ZHAO ◽  
Chunyu ZHANG ◽  
Yuzhen JIA ◽  
Juan FAN ◽  
...  

2013 ◽  
Vol 37 (3) ◽  
pp. 230-238 ◽  
Author(s):  
Jun LIU ◽  
Qing-Pei YANG ◽  
Qing-Ni SONG ◽  
Ding-Kun YU ◽  
Guang-Yao YANG ◽  
...  

Author(s):  
D.V. ZATSARINNAYA ◽  
E.M. VOLKOVA ◽  
A.A. SIRIN

Vegetation cover and environmental factors were studied in the system of karts mires in the broad- leaved forest zone in Tula Region, Central European Russia. Mires are formed in the sinkholes and characterized by rather low anthropogenic disturbances. These mires are characterised by floating peat mats and variety of vegetation communities which are differ by ecological conditions (water levels, acidity and nutrition). Development and growth of floating mats change water and mineral feeding that leads to succession of vegetation communities.


Sign in / Sign up

Export Citation Format

Share Document