scholarly journals Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem

2021 ◽  
Vol 13 (20) ◽  
pp. 4105
Author(s):  
Luis A. Reyes Rojas ◽  
Italo Moletto-Lobos ◽  
Fabio Corradini ◽  
Cristian Mattar ◽  
Rodrigo Fuster ◽  
...  

Evapotranspiration (ET) is key to assess crop water balance and optimize water-use efficiency. To attain sustainability in cropping systems, especially in semi-arid ecosystems, it is necessary to improve methodologies of ET estimation. A method to predict ET is by using land surface temperature (LST) from remote sensing data and applying the Operational Simplified Surface Energy Balance Model (SSEBop). However, to date, LST information from Landsat-8 Thermal Infrared Sensor (TIRS) has a coarser resolution (100 m) and longer revisit time than Sentinel-2, which does not have a thermal infrared sensor, which compromises its use in ET models as SSEBop. Therefore, in the present study we set out to use Sentinel-2 data at a higher spatial-temporal resolution (10 m) to predict ET. Three models were trained using TIRS’ images as training data (100 m) and later used to predict LST at 10 m in the western section of the Copiapó Valley (Chile). The models were built on cubist (Cub) and random forest (RF) algorithms, and a sinusoidal model (Sin). The predicted LSTs were compared with three meteorological stations located in olives, vineyards, and pomegranate orchards. RMSE values for the prediction of LST at 10 m were 7.09 K, 3.91 K, and 3.4 K in Cub, RF, and Sin, respectively. ET estimation from LST in spatial-temporal relation showed that RF was the best overall performance (R2 = 0.710) when contrasted with Landsat, followed by the Sin model (R2 = 0.707). Nonetheless, the Sin model had the lowest RMSE (0.45 mm d−1) and showed the best performance at predicting orchards’ ET. In our discussion, we argue that a simplistic sinusoidal model built on NDVI presents advantages over RF and Cub, which are constrained to the spatial relation of predictors at different study areas. Our study shows how it is possible to downscale Landsat-8 TIRS’ images from 100 m to 10 m to predict ET.

2021 ◽  
Vol 25 (9) ◽  
pp. 4789-4805
Author(s):  
Sònia Jou-Claus ◽  
Albert Folch ◽  
Jordi Garcia-Orellana

Abstract. Submarine groundwater discharge (SGD) has received increasing attention over the past 2 decades as a source of nutrients, trace elements and ocean pollutants that may alter coastal biogeochemical cycles. Assessing SGD flows and their impact on coastal marine environments is a difficult task, since it is not easy to identify and measure these water flows discharging into the sea. The aim of this study is to demonstrate the significant usefulness of the freely available thermal infrared (TIR) imagery of the Landsat 8 thermal infrared sensor (TIRS) as an exploratory tool for identifying SGD springs worldwide, from local to regional scales, for long-term analysis. The use of satellite thermal data as a technique for identifying SGD springs in seawater is based on the identification of thermally anomalous plumes obtained from the thermal contrasts between groundwater and sea surface water. In this study, we use the TIR remote sensing (TIR-RS) imagery provided by Landsat 8 at a regional scale and discuss the principle limiting factors of using this technique in SGD studies. The study was developed in karstic coastal aquifers in the Mediterranean Sea basin during different seasons and under diverse meteorological conditions. Although this study demonstrates that freely available satellite TIR remote sensing is a useful method for identifying coastal springs in karst aquifers both locally and regionally, the limiting factors include technical limitations, geological and hydrogeological characteristics, environmental and marine conditions and coastal geomorphology.


2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


2017 ◽  
Vol 33 ◽  
pp. 117
Author(s):  
Laurizio Emanuel Ribeiro Alves ◽  
Heliofábio Barros Gomes ◽  
Maurílio Neemias dos Santos ◽  
Ismael Guidson Farias de Freitas

O presente estudo tem como objetivo realizar a estimativa do saldo de radiação à superfície-Rn através do algoritmo SEBAL e imagens do satélite Landsat-8 para a Bacia do Rio Pajeú. Os dados de Rn estimados pelo SEBAL foram comparados com medições obtidas em duas estações automáticas localizadas nos municípios de Floresta e Serra Talhada. Foi utilizada uma imagem dos sensores OLI (Operational Land Image) e TIRS (Thermal Infrared Sensor) abordo do satélite Landsat-8, orbita 216 e ponto 66, para o dia 20 de novembro de 2016. A partir das imagens se obteve a radiância e reflectividade espectral, seguido do albedo de superfície, índices de vegetação, emissividade, temperatura superficial, radiação de onda curta incidente – Rs, radiação de onda longa incidente e emitida - Rol,atm e Rol,emi, respectivamente, e Rn. Nos resultados encontrados observa-se que os menores valores de albedo e temperatura foram observados em corpos d’água e vegetação, e maiores valores em áreas urbanas. Estas componentes estão ligadas diretamente com as componentes do saldo de radiação, onde se observou menores valores de Rol,atm e Rol,emi que estão diretamente ligadas a maior ou menor Rn. A validação dos dados do algoritmo SEBAL a partir das estações automáticas foi observado um erro relativo entre 9 e 11% para a imagem Landsat-8 para o dia 20/09/2016, verificando a acurácia das imagens para a estimativa do saldo de radiação à superfície – Rn, para a Bacia do Rio Pajeú.


2021 ◽  
Vol 2 (2) ◽  
pp. 92-99
Author(s):  
Syatiya Mirwanda ◽  
Fatiha Salsabila ◽  
Regita Pramesti ◽  
Annida Rifqoh Zakiyyah ◽  
Muhammad Rizki Tuelzar

Prospek geotermal di daerah Timur Ciremai berada pada aktivitas vulkanik aktif namun pencarian prospek panas bumi di area ini mengabur akibat adanya kontras antara batuan vulkanik dengan batuan sedimen. Penelitian ini mencoba mengidentifikasi area potensial panas bumi berdasarkan suhu permukaan menggunakan metode pengindraan jauh. Data yang digunakan berupa citra satelit Landsat 8 yang sudah mempunyai sensor termal yang disebut Thermal Infrared Sensor (TIRS) pada pita sensor 10 dan 11 yang dikombinasikan dengan NDVI. Hasil analisis NDVI menunjukkan bahwa daerah penelitian memiliki vegetasi dan permukaan berupa air atau awan yang lebih banyak memantulkan gelombang cahaya tampak dibandingkan gelombang infrared dengan nilai NDVI -0,75 - 0,88. Hasil analisis LST dapat diketahui bahwa suhu permukaan pada daerah tersebut memiliki nilai dalam rentang 15 °C – 31 °C. Area yang memiliki tingkat LST tinggi di antara tingkat LST yang rendah dapat diperkirakan sebagai area yang memiliki anomali. Hal ini bersesuaian dengan kerapatan vegetasi pada area tersebut yang tinggi sehingga seharusnya besar suhu permukaannya rendah bukan sebaliknya. Berdasarkan integrasi dengan data manifestasi di lapangan, maka dapat di pastikan bahwasanya terdapat beberapa anomali panas bumi pada arah tenggara dari Gunung Ciremai.


2019 ◽  
Vol 11 (15) ◽  
pp. 1744 ◽  
Author(s):  
Daniel Maciel ◽  
Evlyn Novo ◽  
Lino Sander de Carvalho ◽  
Cláudio Barbosa ◽  
Rogério Flores Júnior ◽  
...  

Remote sensing imagery are fundamental to increasing the knowledge about sediment dynamics in the middle-lower Amazon floodplains. Moreover, they can help to understand both how climate change and how land use and land cover changes impact the sediment exchange between the Amazon River and floodplain lakes in this important and complex ecosystem. This study investigates the suitability of Landsat-8 and Sentinel-2 spectral characteristics in retrieving total (TSS) and inorganic (TSI) suspended sediments on a set of Amazon floodplain lakes in the middle-lower Amazon basin using in situ Remote Sensing Reflectance (Rrs) measurements to simulate Landsat 8/OLI (Operational Land Imager) and Sentinel 2/MSI (Multispectral Instrument) bands and to calibrate/validate several TSS and TSI empirical algorithms. The calibration was based on the Monte Carlo Simulation carried out for the following datasets: (1) All-Dataset, consisting of all the data acquired during four field campaigns at five lakes spread over the lower Amazon floodplain (n = 94); (2) Campaign-Dataset including samples acquired in a specific hydrograph phase (season) in all lakes. As sample size varied from one season to the other, n varied from 18 to 31; (3) Lake-Dataset including samples acquired in all seasons at a given lake with n also varying from 17 to 67 for each lake. The calibrated models were, then, applied to OLI and MSI scenes acquired in August 2017. The performance of three atmospheric correction algorithms was also assessed for both OLI (6S, ACOLITE, and L8SR) and MSI (6S, ACOLITE, and Sen2Cor) images. The impact of glint correction on atmosphere-corrected image performance was assessed against in situ glint-corrected Rrs measurements. After glint correction, the L8SR and 6S atmospheric correction performed better with the OLI and MSI sensors, respectively (Mean Absolute Percentage Error (MAPE) = 16.68% and 14.38%) considering the entire set of bands. However, for a given single band, different methods have different performances. The validated TSI and TSS satellite estimates showed that both in situ TSI and TSS algorithms provided reliable estimates, having the best results for the green OLI band (561 nm) and MSI red-edge band (705 nm) (MAPE < 21%). Moreover, the findings indicate that the OLI and MSI models provided similar errors, which support the use of both sensors as a virtual constellation for the TSS and TSI estimate over an Amazon floodplain. These results demonstrate the applicability of the calibration/validation techniques developed for the empirical modeling of suspended sediments in lower Amazon floodplain lakes using medium-resolution sensors.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 608 ◽  
Author(s):  
Muhammad Mejbel Salih ◽  
Oday Zakariya Jasim ◽  
Khalid I. Hassoon ◽  
Aysar Jameel Abdalkadhum

This paper illustrates a proposed method for the retrieval of land surface temperature (LST) from the two thermal bands of the LANDSAT-8 data. LANDSAT-8, the latest satellite from Landsat series, launched on 11 February 2013, using LANDSAT-8 Operational Line Imager and Thermal Infrared Sensor (OLI & TIRS) satellite data. LANDSAT-8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12 bits. In this search a trial has been made to estimate LST over Al-Hashimiya district, south of Babylon province, middle of Iraq. Two dates images acquired on 2nd &18th of March 2018 to retrieve LST and compare them with ground truth data from infrared thermometer camera (all the measurements contacted with target by using type-k thermocouple) at the same time of images capture. The results showed that the rivers had a higher LST which is different to the other land cover types, of less than 3.47 C ◦, and the LST different for vegetation and residential area were less than 0.4 C ◦ with correlation coefficient of the two bands 10 and 11 Rbnad10= 0.70, Rband11 = 0.89 respectively, for the imaged acquired on the 2nd of march 2018 and Rband10= 0.70 and Rband11 = 0.72 on the 18th of march 2018. These results confirm that the proposed approach is effective for the retrieval of LST from the LANDSAT-8 Thermal bands, and the IR thermometer camera data which is an effective way to validate and improve the performance of LST retrieval. Generally the results show that the closer measurement taken from the scene center time, a better quality to classify the land cover. The purpose of this study is to assess the use of LANDSAT-8 data to specify temperature differences in land cover and compare the relationship between land surface temperature and land cover types.   


2020 ◽  
Vol 12 (19) ◽  
pp. 3121
Author(s):  
Roya Mourad ◽  
Hadi Jaafar ◽  
Martha Anderson ◽  
Feng Gao

Leaf area index (LAI) is an essential indicator of crop development and growth. For many agricultural applications, satellite-based LAI estimates at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions, Sentinel 2 (ESA) and Landsat 8 (NASA), provides this opportunity. In this study, we evaluated the leaf area index generated from three methods, namely, existing vegetation index (VI) relationships applied to Harmonized Landsat-8 and Sentinel-2 (HLS) surface reflectance produced by NASA, the SNAP biophysical model, and the THEIA L2A surface reflectance products from Sentinel-2. The intercomparison was conducted over the agricultural scheme in Bekaa (Lebanon) using a large set of in-field LAIs and other biophysical measurements collected in a wide variety of canopy structures during the 2018 and 2019 growing seasons. The major studied crops include herbs (e.g., cannabis: Cannabis sativa, mint: Mentha, and others), potato (Solanum tuberosum), and vegetables (e.g., bean: Phaseolus vulgaris, cabbage: Brassica oleracea, carrot: Daucus carota subsp. sativus, and others). Additionally, crop-specific height and above-ground biomass relationships with LAIs were investigated. Results show that of the empirical VI relationships tested, the EVI2-based HLS models statistically performed the best, specifically, the LAI models originally developed for wheat (RMSE:1.27), maize (RMSE:1.34), and row crops (RMSE:1.38). LAI derived through European Space Agency’s (ESA) Sentinel Application Platform (SNAP) biophysical processor underestimated LAI and provided less accurate estimates (RMSE of 1.72). Additionally, the S2 SeLI LAI algorithm (from SNAP biophysical processor) produced an acceptable accuracy level compared to HLS-EVI2 models (RMSE of 1.38) but with significant underestimation at high LAI values. Our findings show that the LAI-VI relationship, in general, is crop-specific with both linear and non-linear regression forms. Among the examined indices, EVI2 outperformed other vegetation indices when all crops were combined, and therefore it can be identified as an index that is best suited for a unified algorithm for crops in semi-arid irrigated regions with heterogeneous landscapes. Furthermore, our analysis shows that the observed height-LAI relationship is crop-specific and essentially linear with an R2 value of 0.82 for potato, 0.79 for wheat, and 0.50 for both cannabis and tobacco. The ability of the linear regression to estimate the fresh and dry above-ground biomass of potato from both observed height and LAI was reasonable, yielding R2: ~0.60.


2020 ◽  
Vol 12 (23) ◽  
pp. 3958
Author(s):  
Parwati Sofan ◽  
David Bruce ◽  
Eriita Jones ◽  
M. Rokhis Khomarudin ◽  
Orbita Roswintiarti

This study establishes a new technique for peatland fire detection in tropical environments using Landsat-8 and Sentinel-2. The Tropical Peatland Combustion Algorithm (ToPeCAl) without longwave thermal infrared (TIR) (henceforth known as ToPeCAl-2) was tested on Landsat-8 Operational Land Imager (OLI) data and then applied to Sentinel-2 Multi Spectral Instrument (MSI) data. The research is aimed at establishing peatland fire information at higher spatial resolution and more frequent observation than from Landsat-8 data over Indonesia’s peatlands. ToPeCAl-2 applied to Sentinel-2 was assessed by comparing fires detected from the original ToPeCAl applied to Landsat-8 OLI/Thermal Infrared Sensor (TIRS) verified through comparison with ground truth data. An adjustment of ToPeCAl-2 was applied to minimise false positive errors by implementing pre-process masking for water and permanent bright objects and filtering ToPeCAl-2’s resultant detected fires by implementing contextual testing and cloud masking. Both ToPeCAl-2 with contextual test and ToPeCAl with cloud mask applied to Sentinel-2 provided high detection of unambiguous fire pixels (>95%) at 20 m spatial resolution. Smouldering pixels were less likely to be detected by ToPeCAl-2. The detected smouldering pixels from ToPeCAl-2 applied to Sentinel-2 with contextual testing and with cloud masking were only 35% and 56% correct, respectively; this needs further investigation and validation. These results demonstrate that even in the absence of TIR data, an adjusted ToPeCAl algorithm (ToPeCAl-2) can be applied to detect peatland fires at 20 m resolution with high accuracy especially for flaming. Overall, the implementation of ToPeCAl applied to cost-free and available Landsat-8 and Sentinel-2 data enables regular peatland fire monitoring in tropical environments at higher spatial resolution than other satellite-derived fire products.


Sign in / Sign up

Export Citation Format

Share Document