scholarly journals Depths Inferred from Velocities Estimated by Remote Sensing: A Flow Resistance Equation-Based Approach to Mapping Multiple River Attributes at the Reach Scale

2021 ◽  
Vol 13 (22) ◽  
pp. 4566
Author(s):  
Carl Legleiter ◽  
Paul Kinzel

Remote sensing of flow conditions in stream channels could facilitate hydrologic data collection, particularly in large, inaccessible rivers. Previous research has demonstrated the potential to estimate flow velocities in sediment-laden rivers via particle image velocimetry (PIV). In this study, we introduce a new framework for also obtaining bathymetric information: Depths Inferred from Velocities Estimated by Remote Sensing (DIVERS). This approach is based on a flow resistance equation and involves several assumptions: steady, uniform, one-dimensional flow and a direct proportionality between the velocity estimated at a given location and the local water depth, with no lateral transfer of mass or momentum. As an initial case study, we performed PIV and inferred depths from videos acquired from a helicopter hovering at multiple waypoints along a large river in central Alaska. The accuracy of PIV-derived velocities was assessed via comparison to field measurements and the performance of an optimization-based approach to DIVERS specification of roughness

2018 ◽  
Vol 49 (4) ◽  
pp. 220-227 ◽  
Author(s):  
Vito Ferro ◽  
Paolo Porto

Previous studies showed that integrating a power velocity profile, deduced applying dimensional analysis and the incomplete self-similarity condition, the flow resistance equation for open channel flow can be obtained. At first, in this paper the relationship between the Γ function of the power velocity profile, the channel slope and the Froude number, which was already empirically introduced in a previous paper, is now theoretically deduced. Then this relationship is calibrated using the field measurements of flow velocity, water depth and bed slope carried out in 101 reaches of gravel bed rivers available by literature. The proposed relationship for estimating Γ function and the theoretical flow resistance equation are also tested by an independent dataset of 104 reaches of some gravel bed rivers (Fiumare) in Calabria region. Finally, the theoretically-based relationship for estimating the Γ function is calibrated by the overall available database (205 reaches). In this way the three coefficients of the theoretically based Γ function are estimated for a wide range of slopes (0.1%-6.19%) and hydraulic conditions (Froude number values ranging from 0.08 to 1.25). In conclusion, the analysis shows that the Darcy-Weisbach friction factor for gravel bed rivers can be accurately estimated by the approach based on a power-velocity profile and the theoretically-based relationship proposed for estimating Γ function. The analysis also points out a performance in estimating mean flow velocity better than that obtained in a previous study carried out by the authors.


2021 ◽  
Vol 13 (11) ◽  
pp. 6055
Author(s):  
Andrija Krtalić ◽  
Dario Linardić ◽  
Renata Pernar

Urban forest and vegetation conditions are an important variable in urban ecosystem management decision-making. However, it is difficult to evaluate and monitor solely on the basis of field measurements. Remote sensing technologies can greatly contribute to the faster extraction and mapping of vegetation health status indicators, on the basis of which agronomy and forestry experts can draw conclusions about the condition of urban vegetation in larger areas. A new remote sensing-based urban forest and vegetation cover monitoring framework is presented and applied to a case study of the city of Zagreb, Croatia. In this study, Sentinel-2 multi-temporal imagery was used to derive and analyze the current state of urban forest cover. Vegetation indices (NDVI, RVI, and GRVI) were calculated. K-means unsupervised classification of the vegetation indices was conducted. In this way, the dimensionality of the vegetation indices was reduced, while all the data contained in it were used to represent their graded values. Vegetation that was in a poor condition stood out better that way. Finally, PCA-based change detection was performed on the vegetation indices graded values, and a map of change was produced. These results need to be interpreted and validated by foresters and agronomists in further research.


2021 ◽  
Vol 3 ◽  
Author(s):  
Carl J. Legleiter ◽  
Paul J. Kinzel

Conventional, field-based streamflow monitoring in remote, inaccessible locations such as Alaska poses logistical challenges. Safety concerns, financial considerations, and a desire to expand water-observing networks make remote sensing an appealing alternative means of collecting hydrologic data. In an ongoing effort to develop non-contact methods for measuring river discharge, we evaluated the potential to estimate surface flow velocities from satellite video of a large, sediment-laden river in Alaska via particle image velocimetry (PIV). In this setting, naturally occurring sediment boil vortices produced distinct water surface features that could be tracked from frame to frame as they were advected by the flow, obviating the need to introduce artificial tracer particles. In this study, we refined an end-to-end workflow that involved stabilization and geo-referencing, image preprocessing, PIV analysis with an ensemble correlation algorithm, and post-processing of PIV output to filter outliers and scale and geo-reference velocity vectors. Applying these procedures to image sequences extracted from satellite video allowed us to produce high resolution surface velocity fields; field measurements of depth-averaged flow velocity were used to assess accuracy. Our results confirmed the importance of preprocessing images to enhance contrast and indicated that lower frame rates (e.g., 0.25 Hz) lead to more reliable velocity estimates because longer capture intervals allow more time for water surface features to translate several pixels between frames, given the relatively coarse spatial resolution of the satellite data. Although agreement between PIV-derived velocity estimates and field measurements was weak (R2 = 0.39) on a point-by-point basis, correspondence improved when the PIV output was aggregated to the cross-sectional scale. For example, the correspondence between cross-sectional maximum velocities inferred via remote sensing and measured in the field was much stronger (R2 = 0.76), suggesting that satellite video could play a role in measuring river discharge. Examining correlation matrices produced as an intermediate output of the PIV algorithm yielded insight on the interactions between image frame rate and sensor spatial resolution, which must be considered in tandem. Although further research and technological development are needed, measuring surface flow velocities from satellite video could become a viable tool for streamflow monitoring in certain fluvial environments.


2021 ◽  
Vol 34 (2) ◽  
pp. 04020118
Author(s):  
Song Zhou ◽  
Guan-Lin Ye ◽  
Lei Han ◽  
Wang Jian-Hua

Sign in / Sign up

Export Citation Format

Share Document