scholarly journals Comparison of Field and SAR-Derived Descriptors in the Retrieval of Soil Moisture from Oil Palm Crops Using PALSAR-2

2021 ◽  
Vol 13 (23) ◽  
pp. 4729
Author(s):  
Veena Shashikant ◽  
Abdul Rashid Mohamed Shariff ◽  
Aimrun Wayayok ◽  
Md Rowshon Kamal ◽  
Yang Ping Lee ◽  
...  

Synthetic-aperture radar’s (SAR’s) capacity to resolve the cloud cover concerns encountered while gathering optical data has tremendous potential for soil moisture data retrieval using SAR data. It is possible to use SAR data to recover soil moisture because the backscatter coefficient is sensitive to both soil and vegetation by penetrating through the vegetation layer. This study investigated the feasibility of employing a SAR-derived radar vegetation index (RVI), the ratios of the backscatter coefficients using polarizations of HH/HV (RHH/HV) and HV/HH (RHH/HV) to an oil palm crops as vegetation indicators in the water cloud model (WCM) using phased-array L-band SAR-2 (PALSAR-2). These data were compared to the manual leaf area index (LAI) and a physical soil sampling method for computing soil moisture. The field data included the LAI input parameters and, more importantly, physical soil samples from which to calculate the soil moisture. The fieldwork was carried out in Chuping District, Perlis State, Malaysia. Corresponding PALSAR-2 data were collected on three observation dates in 2019: 17 January, 16 April, and 9 July. The results showed that the WCM modeled using the LAI under HV polarization demonstrated promising accuracy, with the root mean square error recorded as 0.033 m3/m3. This was comparable to the RVI and RHH/HV under HV polarization, which had accuracies of 0.031 and 0.049 m3/m3, respectively. The findings of this study suggest that SAR-based indicators, RHH/HV and RVI using PALSAR-2, can be used to reduce field-related input in the retrieval of soil moisture data using the WCM for oil palm crop.

2021 ◽  
Vol 13 (20) ◽  
pp. 4023
Author(s):  
Veena Shashikant ◽  
Abdul Rashid Mohamed Shariff ◽  
Aimrun Wayayok ◽  
Md Rowshon Kamal ◽  
Yang Ping Lee ◽  
...  

In oil palm crop, soil fertility is less important than the physical soil characteristics. It is important to have a balance and sufficient soil moisture to sustain high yields in oil palm plantations. However, conventional methods of soil moisture determination are laborious and time-consuming with limited coverage and accuracy. In this research, we evaluated synthetic aperture radar (SAR) and in-situ observations at an oil palm plantation to determine SAR signal sensitivity to oil palm crop by means of water cloud model (WCM) inversion for retrieving soil moisture from L-band HH and HV polarized data. The effects of vegetation on backscattering coefficients were evaluated by comparing Leaf Area Index (LAI), Leaf Water Area Index (LWAI) and Normalized Plant Water Content (NPWC). The results showed that HV polarization effectively simulated backscatter coefficient as compared to HH polarization where the best fit was obtained by taking the LAI as a vegetation descriptor. The HV polarization with the LAI indicator was able to retrieve soil moisture content with an accuracy of at least 80%.


2020 ◽  
Vol 12 (17) ◽  
pp. 2708 ◽  
Author(s):  
Qi Wang ◽  
Jiancheng Li ◽  
Taoyong Jin ◽  
Xin Chang ◽  
Yongchao Zhu ◽  
...  

Soil moisture is an important variable in ecological, hydrological, and meteorological studies. An effective method for improving the accuracy of soil moisture retrieval is the mutual supplementation of multi-source data. The sensor configuration and band settings of different optical sensors lead to differences in band reflectivity in the inter-data, further resulting in the differences between vegetation indices. The combination of synthetic aperture radar (SAR) data with multi-source optical data has been widely used for soil moisture retrieval. However, the influence of vegetation indices derived from different sources of optical data on retrieval accuracy has not been comparatively analyzed thus far. Therefore, the suitability of vegetation parameters derived from different sources of optical data for accurate soil moisture retrieval requires further investigation. In this study, vegetation indices derived from GF-1, Landsat-8, and Sentinel-2 were compared. Based on Sentinel-1 SAR and three optical data, combined with the water cloud model (WCM) and the advanced integral equation model (AIEM), the accuracy of soil moisture retrieval was investigated. The results indicate that, Sentinel-2 data were more sensitive to vegetation characteristics and had a stronger capability for vegetation signal detection. The ranking of normalized difference vegetation index (NDVI) values from the three sensors was as follows: the largest was in Sentinel-2, followed by Landsat-8, and the value of GF-1 was the smallest. The normalized difference water index (NDWI) value of Landsat-8 was larger than that of Sentinel-2. With reference to the relative components in the WCM model, the contribution of vegetation scattering exceeded that of soil scattering within a vegetation index range of approximately 0.55–0.6 in NDVI-based models and all ranges in NDWI1-based models. The threshold value of NDWI2 for calculating vegetation water content (VWC) was approximately an NDVI value of 0.4–0.55. In the soil moisture retrieval, Sentinel-2 data achieved higher accuracy than data from the other sources and thus was more suitable for the study for combination with SAR in soil moisture retrieval. Furthermore, compared with NDVI, higher accuracy of soil moisture could be retrieved by using NDWI1 (R2 = 0.623, RMSE = 4.73%). This study provides a reference for the selection of optical data for combination with SAR in soil moisture retrieval.


2018 ◽  
Vol 10 (9) ◽  
pp. 1370 ◽  
Author(s):  
Junhua Li ◽  
Shusen Wang

The water cloud model (WCM) is a widely used radar backscatter model applied to SAR images to retrieve soil moisture over vegetated areas. The WCM needs vegetation descriptors to account for the impact of vegetation on SAR backscatter. The commonly used vegetation descriptors in WCM, such as Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI), are sometimes difficult to obtain due to the constraints in data availability in in-situ measurements or weather dependency in optical remote sensing. To improve soil moisture retrieval, this study investigates the feasibility of using all-weather SAR derived vegetation descriptors in WCM. The in-situ data observed at an agricultural crop region south of Winnipeg in Canada, RapidEye optical images and dual-polarized Radarsat-2 SAR images acquired in growing season were used for WCM model calibration and test. Vegetation descriptors studied include HV polarization backscattering coefficient ( σ H V ° ) and Radar Vegetation Index (RVI) derived from SAR imagery, and NDVI derived from optical imagery. The results show that σ H V ° achieved similar results as NDVI but slightly better than RVI, with a root mean square error of 0.069 m3/m3 and a correlation coefficient of 0.59 between the retrieved and observed soil moisture. The use of σ H V ° can overcome the constraints of the commonly used vegetation descriptors and reduce additional data requirements (e.g., NDVI from optical sensors) in WCM, thus improving soil moisture retrieval and making WCM feasible for operational use.


2020 ◽  
Vol 12 (15) ◽  
pp. 2352
Author(s):  
Adriano Camps ◽  
Alberto Alonso-Arroyo ◽  
Hyuk Park ◽  
Raul Onrubia ◽  
Daniel Pascual ◽  
...  

At L-band (1–2 GHz), and particularly in microwave radiometry (1.413 GHz), vegetation has been traditionally modeled with the τ-ω model. This model has also been used to compensate for vegetation effects in Global Navigation Satellite Systems-Reflectometry (GNSS-R) with modest success. This manuscript presents an analysis of the vegetation impact on GPS L1 C/A (coarse acquisition code) signals in terms of attenuation and depolarization. A dual polarized instrument with commercial off-the-shelf (COTS) GPS receivers as back-ends was installed for more than a year under a beech forest collecting carrier-to-noise (C/N0) data. These data were compared to different ground-truth datasets (greenness, blueness, and redness indices, sky cover index, rain data, leaf area index or LAI, and normalized difference vegetation index (NDVI)). The highest correlation observed is between C/N0 and NDVI data, obtaining R2 coefficients larger than 0.85 independently from the elevation angle, suggesting that for beech forest, NDVI is a good descriptor of signal attenuation at L-band, which is known to be related to the vegetation optical depth (VOD). Depolarization effects were also studied, and were found to be significant at elevation angles as large as ~50°. Data were also fit to a simple τ-ω model to estimate a single scattering albedo parameter (ω) to try to compensate for vegetation scattering effects in soil moisture retrieval algorithms using GNSS-R. It is found that, even including dependence on the elevation angle (ω(θe)), at elevation angles smaller than ~67°, the ω(θe) model is not related to the NDVI. This limits the range of elevation angles that can be used for soil moisture retrievals using GNSS-R. Finally, errors of the GPS-derived position were computed over time to assess vegetation impact on the accuracy of the positioning.


2019 ◽  
Vol 11 (3) ◽  
pp. 368 ◽  
Author(s):  
Zhi Zhang ◽  
Dagang Wang ◽  
Guiling Wang ◽  
Jianxiu Qiu ◽  
Weilin Liao

Satellite-based precipitation products have been widely used in a variety of fields. However, near real time products still contain substantial biases compared with the ground data. Recent studies showed that surface soil moisture can be utilized in improving rainfall estimation as it reflects recent precipitation. In this study, soil moisture data from Soil Moisture Active Passive (SMAP) satellite and observation-based fitting are used to correct near real time satellite-based precipitation product Global Precipitation Measurement (GPM) in mainland China. The particle filter is adopted to assimilate the SMAP soil moisture into a simple hydrological model, the antecedent precipitation index (API) model; three fitting methods—i.e., linear, nonlinear, and cumulative distribution function (CDF) fitting corrections—both separately and in combination with the SMAP soil moisture data, are then used to correct GPM. The results show that the soil moisture-based correction significantly reduces the root mean square error (RMSE) and mean absolute errors (BIAS) of the original GPM product in most areas of China. The median RMSE value for daily precipitation over China is decreased by approximately 18% from 5.25 mm/day for the GPM estimates to 4.32 mm/day for the soil moisture corrected estimates, and the median BIAS value is decreased by approximately 13% from 2.03 mm/day to 1.76 mm/day. The fitting correction method alone also improves GPM, although to a lesser extent. The best performance is found when the SMAP soil moisture assimilation is combined with the linear fitting of observed precipitation, with a median RMSE of 4.00 mm/day and a BIAS of 1.69 mm/day. Despite significant reductions to the biases of the satellite precipitation product, none of these methods is effective in improving the correlation between the satellite product and observational reference. Leaf area index and the frequency of the SMAP overpasses are among the potential factors influencing the correction effect. This study highlights that combining soil moisture and historical precipitation information can effectively improve satellite-based precipitation products in near real time.


2018 ◽  
Vol 10 (12) ◽  
pp. 1953 ◽  
Author(s):  
Safa Bousbih ◽  
Mehrez Zribi ◽  
Mohammad El Hajj ◽  
Nicolas Baghdadi ◽  
Zohra Lili-Chabaane ◽  
...  

This paper presents a technique for the mapping of soil moisture and irrigation, at the scale of agricultural fields, based on the synergistic interpretation of multi-temporal optical and Synthetic Aperture Radar (SAR) data (Sentinel-2 and Sentinel-1). The Kairouan plain, a semi-arid region in central Tunisia (North Africa), was selected as a test area for this study. Firstly, an algorithm for the direct inversion of the Water Cloud Model (WCM) was developed for the spatialization of the soil water content between 2015 and 2017. The soil moisture retrieved from these observations was first validated using ground measurements, recorded over 20 reference fields of cereal crops. A second method, based on the use of neural networks, was also used to confirm the initial validation. The results reported here show that the soil moisture products retrieved from remotely sensed data are accurate, with a Root Mean Square Error (RMSE) of less than 5% between the two moisture products. In addition, the analysis of soil moisture and Normalized Difference Vegetation Index (NDVI) products over cultivated fields, as a function of time, led to the classification of irrigated and rainfed areas on the Kairouan plain, and to the production of irrigation maps at the scale of individual fields. This classification is based on a decision tree approach, using a combination of various statistical indices of soil moisture and NDVI time series. The resulting irrigation maps were validated using reference fields within the study site. The best results were obtained with classifications based on soil moisture indices only, with an accuracy of 77%.


2019 ◽  
Vol 11 (7) ◽  
pp. 752 ◽  
Author(s):  
Zhongchang Sun ◽  
Ru Xu ◽  
Wenjie Du ◽  
Lei Wang ◽  
Dengsheng Lu

Accurate and timely urban land mapping is fundamental to supporting large area environmental and socio-economic research. Most of the available large-area urban land products are limited to a spatial resolution of 30 m. The fusion of optical and synthetic aperture radar (SAR) data for large-area high-resolution urban land mapping has not yet been widely explored. In this study, we propose a fast and effective urban land extraction method using ascending/descending orbits of Sentinel-1A SAR data and Sentinel-2 MSI (MultiSpectral Instrument, Level 1C) optical data acquired from 1 January 2015 to 30 June 2016. Potential urban land (PUL) was identified first through logical operations on yearly mean and standard deviation composites from a time series of ascending/descending orbits of SAR data. A Yearly Normalized Difference Vegetation Index (NDVI) maximum and modified Normalized Difference Water Index (MNDWI) mean composite were generated from Sentinel-2 imagery. The slope image derived from SRTM DEM data was used to mask mountain pixels and reduce the false positives in SAR data over these regions. We applied a region-specific threshold on PUL to extract the target urban land (TUL) and a global threshold on the MNDWI mean, and slope image to extract water bodies and high-slope regions. A majority filter with a three by three window was applied on previously extracted results and the main processing was carried out on the Google Earth Engine (GEE) platform. China was chosen as the testing region to validate the accuracy and robustness of our proposed method through 224,000 validation points randomly selected from high-resolution Google Earth imagery. Additionally, a total of 735 blocks with a size of 900 × 900 m were randomly selected and used to compare our product’s accuracy with the global human settlement layer (GHSL, 2014), GlobeLand30 (2010), and Liu (2015) products. Our method demonstrated the effectiveness of using a fusion of optical and SAR data for large area urban land extraction especially in areas where optical data fail to distinguish urban land from spectrally similar objects. Results show that the average overall, producer’s and user’s accuracies are 88.03%, 94.50% and 82.22%, respectively.


2020 ◽  
Author(s):  
Tiago Ramos ◽  
Lucian Simionesei ◽  
Marta Basso ◽  
Vivien Stefan ◽  
Ana Oliveira ◽  
...  

<p>Watershed modelling is one of the most important assessment tools in watershed planning and management. Nonetheless, the classic calibration of watershed models, in which a few discharge gauges near the outlet of a catchment are used to compare measured and simulated streamflow, is often criticized by not assuring that relevant processes such as evapotranspiration, soil moisture, crop growth, and groundwater recharge are well represented in the catchment area. This study aimed to simulate streamflow in two Mediterranean catchments, Orba (778km<sup>2</sup>) in Italy and Segre (1286km<sup>2</sup>) in Spain, using the physically-based, fully distributed MOHID-Land model. Model calibration/validation of streamflow was first performed following a classical approach. Different products derived from remote sensing platforms were then used to evaluate the adequacy of model simulations of crop growth and soil moisture in the catchment area.</p><p>The MOHID-Land model considers four compartments or mediums (atmosphere, porous media, soil surface and river network), computing water dynamics through the different mediums using mass and momentum conservation equations. The model was implemented in the two simulated catchments with a resolution of 1 km. Data inputs included the Digital Elevation Model over Europe (EU-DEM) with a resolution of 30 m; the soil hydraulic properties map from EU-SoilHydroGrids ver1.0 with a resolution of 250 m; the CORINE land cover map from 2012 with a resolution of 100 m; the hourly weather data (precipitation, wind velocity, relative air humidity, solar radiation and surface air temperature) from local weather stations; and the reservoir discharge data from governmental and/or regional agencies. Simulations were run from 2006-2014 for Orba and from 2008-2018 for Segre, and included a model warm-up, a calibration, and a validation period. Comparison between simulated and measured flows were performed in 2 and 10 hydrometric stations located in the Orba and Segre catchments, respectively. Four statistical parameters (R<sup>2</sup>, RMSE, PBIAS and NSE) were used to evaluate model performance, confirming the good fitting of model simulations to measured data.</p><p>Model simulations of leaf area index (LAI) were then compared with LAI maps at 30 m resolution derived from ATCOR and Landsat 8 imagery data using the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI). Furthermore, model simulation of soil moisture were also compared at the surface depth (0-5 cm) with soil moisture maps at 1 km resolution created with the DISaggregation based on a Physical And Theoretical scale CHange (DISPATCH) algorithm for the downscaling of the 40 km SMOS (Soil Moisture and Ocean Salinity) soil moisture data using land surface temperature (LST) and NDVI data. Results showed the fundamental differences between the MOHID-Land and remote sensing outputs, with major differences being analyzed by soil units and land use classes.</p>


2020 ◽  
Author(s):  
Nadia Ouaadi ◽  
Lionel Jarlan ◽  
Jamal Ezzahar ◽  
Saïd Khabba ◽  
Mehrez Zribi ◽  
...  

<p>High spatial and temporal resolution products of Sentinel-1 are used for surface soil moisture (SSM) mapping over wheat fields in semi-arid areas. Within these regions, monitoring the water-use is a critical aspect for optimizing the management of the limited water resources via irrigation monitoring. SSM is one of the principal quantities affecting microwave remote sensing. This sensitivity has been exploited to estimate SSM from radar data, which has the advantages of providing data independent of illumination and weather conditions. In addition, with the use of Sentinel-1 products, the spatial and temporal resolution is greatly improved. Within this context, the main objective of this work is estimate SSM over wheat fields using an approach based on the use of C-band Sentinel-1 radar data only. Over the study site, field measurement are collected during 2016-2017 and 2017-2018 growing seasons over two fields of winter wheat with drip irrigation located in the Haouz plain in the center of Morocco. Data of other sites in Morocco and Tunisia are taken for validation purposes. The validation database contains a total number of 20 plots divided between irrigated and rainfed wheat plots. Two different information extracted from Sentinel-1 products are used: the backscattering coefficient and the interferometric coherence. A total number of 408 GRD and 419 SLC images were processed for computing the backscattering coefficient and the interferometric coherence, respectively. The analysis of Sentinel-1 time series over the study site show that coherence is sensitive to the development of wheat, while the backscatter coefficient is widely linked to changes in surface soil moisture. Later on, the Water Cloud Model coupled with the Oh et al, 1992 model were used for better understand the backscattering mechanism of wheat canopies. The coupled model is calibrated and validated over the study site and it proved to goodly enough reproduce the Sentinel-1 backscatter with RMSE ranging from 1.5 to 2.52 dB for VV and VH using biomass as a descriptor of wheat. On the other side, the analysis show that coherence is well correlated to biomass. Thus, the calibrated model is used in an inversion algorithm to retrieve SSM using the Sentinel-1 backscatter and coherence as inputs. The results of inversion show that the proposed new approach is able to retrieve the surface soil moisture at 35.2° for VV, with R=0.82, RMSE=0.05m<sup>3/</sup>m<sup>3 </sup>and no bias. Using the validation database of Morocco and Tunisia, R is always greater than 0.7 and RMSE and bias are less than 0.008 m<sup>3/</sup>m<sup>3</sup> and 0.03 m<sup>3/</sup>m<sup>3</sup>, respectively even that the incidence angle is higher (40°). In order to assess its quality, the approach is compared to four SSM retrieval methods that use radar and optical data in empirical and semi-empirical approaches. Results indicate that the proposed approach shows an improvement of SSM retrieval between 17% and 42% compared to other methods. Finally, the validated new approach is used for SSM mapping, with a spatial resolution of 10*10 m, over irrigated perimeters of wheat in Morocco.</p>


Sign in / Sign up

Export Citation Format

Share Document