scholarly journals Spatial and Temporal Analyses of Vegetation Changes at Multiple Time Scales in the Qilian Mountains

2021 ◽  
Vol 13 (24) ◽  
pp. 5046
Author(s):  
Lifeng Zhang ◽  
Haowen Yan ◽  
Lisha Qiu ◽  
Shengpeng Cao ◽  
Yi He ◽  
...  

The Qilian Mountains (QLMs), an important ecological protective barrier and major water resource connotation area in the Hexi Corridor region, have an important impact on ecological security in western China due to their ecological changes. However, most existing studies have investigated vegetation changes and their main driving forces in the QLMs on the basis of a single scale. Thus, the interactions among multiple environmental factors in the QLMs are still unclear. This study was based on normalised difference vegetation index (NDVI) data from 2000 to 2019. We systematically analysed the spatial and temporal characteristics of the QLMs at multiple time scales using trend analysis, ensemble empirical mode decomposition, Geodetector, and correlation analysis methods. At different time scales under single-factor and multi-factor interactions, we examined the mechanisms of the vegetation changes and their drivers. Our results showed that the vegetation in the QLMs showed a trend of overall improvement in 2000–2019, at a rate of 0.88 × 10−3, mainly in the central western regions. The NDVI in the QLMs showed a short change cycle of 3 and 5 years and a long-term trend. Sunshine time and wind speed were the main drivers of the vegetation variation in the QLMs, followed by temperature. Precipitation affected the vegetation spatial variation within a certain altitude range. However, temperature and precipitation had stronger explanatory powers for the vegetation variation in the western QLMs than in the eastern part. Their interaction was the dominant factor in the regional differences in vegetation. The responses of the NDVI to temperature and precipitation were stronger in the long time series. The main drivers of vegetation variation were land surface temperature and precipitation in the east and temperature and evapotranspiration in the west. Precipitation was the main driver of vegetation growth in the northern and southwestern QLMs on both the short- and long-term scales. Vegetation changes were more significantly influenced by short-term temperature changes in the east but by a combination of temperature and precipitation in most parts of the QLMs on a 5-year time scale.

2010 ◽  
Vol 68 ◽  
pp. e122
Author(s):  
Hideyuki Cateau ◽  
Leonid Safonov ◽  
Yoshikazu Isomura ◽  
Siu Kang ◽  
Zbigniew Struzik ◽  
...  

2015 ◽  
Vol 370 (1676) ◽  
pp. 20140242 ◽  
Author(s):  
Gur Yaari ◽  
Jennifer I. C. Benichou ◽  
Jason A. Vander Heiden ◽  
Steven H. Kleinstein ◽  
Yoram Louzoun

During the several-week course of an immune response, B cells undergo a process of clonal expansion, somatic hypermutation of the immunoglobulin (Ig) genes and affinity-dependent selection. Over a lifetime, each B cell may participate in multiple rounds of affinity maturation as part of different immune responses. These two time-scales for selection are apparent in the structure of B-cell lineage trees, which often contain a ‘trunk’ consisting of mutations that are shared across all members of a clone, and several branches that form a ‘canopy’ consisting of mutations that are shared by a subset of clone members. The influence of affinity maturation on the B-cell population can be inferred by analysing the pattern of somatic mutations in the Ig. While global analysis of mutation patterns has shown evidence of strong selection pressures shaping the B-cell population, the effect of different time-scales of selection and diversification has not yet been studied. Analysis of B cells from blood samples of three healthy individuals identifies a range of clone sizes with lineage trees that can contain long trunks and canopies indicating the significant diversity introduced by the affinity maturation process. We here show that observed mutation patterns in the framework regions (FWRs) are determined by an almost purely purifying selection on both short and long time-scales. By contrast, complementarity determining regions (CDRs) are affected by a combination of purifying and antigen-driven positive selection on the short term, which leads to a net positive selection in the long term. In both the FWRs and CDRs, long-term selection is strongly dependent on the heavy chain variable gene family.


2018 ◽  
Author(s):  
Yan Liang ◽  
◽  
Daniele J. Cherniak ◽  
Chenguang Sun

2019 ◽  
Vol 11 (4) ◽  
pp. 1163 ◽  
Author(s):  
Melissa Bedinger ◽  
Lindsay Beevers ◽  
Lila Collet ◽  
Annie Visser

Climate change is a product of the Anthropocene, and the human–nature system in which we live. Effective climate change adaptation requires that we acknowledge this complexity. Theoretical literature on sustainability transitions has highlighted this and called for deeper acknowledgment of systems complexity in our research practices. Are we heeding these calls for ‘systems’ research? We used hydrohazards (floods and droughts) as an example research area to explore this question. We first distilled existing challenges for complex human–nature systems into six central concepts: Uncertainty, multiple spatial scales, multiple time scales, multimethod approaches, human–nature dimensions, and interactions. We then performed a systematic assessment of 737 articles to examine patterns in what methods are used and how these cover the complexity concepts. In general, results showed that many papers do not reference any of the complexity concepts, and no existing approach addresses all six. We used the detailed results to guide advancement from theoretical calls for action to specific next steps. Future research priorities include the development of methods for consideration of multiple hazards; for the study of interactions, particularly in linking the short- to medium-term time scales; to reduce data-intensivity; and to better integrate bottom–up and top–down approaches in a way that connects local context with higher-level decision-making. Overall this paper serves to build a shared conceptualisation of human–nature system complexity, map current practice, and navigate a complexity-smart trajectory for future research.


2021 ◽  
Vol 40 (9) ◽  
pp. 2139-2154
Author(s):  
Caroline E. Weibull ◽  
Paul C. Lambert ◽  
Sandra Eloranta ◽  
Therese M. L. Andersson ◽  
Paul W. Dickman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document