scholarly journals Fusion of SAR Interferometry and Polarimetry Methods for Landslide Reactivation Study, the Bureya River (Russia) Event Case Study

2021 ◽  
Vol 13 (24) ◽  
pp. 5136
Author(s):  
Valery Bondur ◽  
Tumen Chimitdorzhiev ◽  
Aleksey Dmitriev ◽  
Pavel Dagurov

In this paper, we demonstrate the estimation capabilities of landslide reactivation based on various SAR (Synthetic Aperture Radar) methods: Cloude-Pottier decomposition of Sentinel-1 dual polarimetry data, MT-InSAR (Multi-temporal Interferometric Synthetic Aperture Radar) techniques, and cloud computing of backscattering time series. The object of the study is the landslide in the east of Russia that took place on 11 December 2018 on the Bureya River. H-α-A polarimetric decomposition of C-band radar images not detected significant transformations of scattering mechanisms for the surface of the rupture, whereas L-band radar data show changes in scattering mechanisms before and after the main landslide. The assessment of ground displacements along the surface of the rupture in the 2019–2021 snowless periods was carried out using MT-InSAR methods. These displacements were 40 mm/year along the line of sight. The SBAS-InSAR results have allowed us to reveal displacements of great area in 2020 and 2021 snowless periods that were 30–40 mm/year along the line-of-sight. In general, the results obtained by MT-InSAR methods showed, on the one hand, the continuation of displacements along the surface of the rupture and on the other hand, some stabilization of the rate of landslide processes.

2013 ◽  
Vol 184 (4-5) ◽  
pp. 441-450 ◽  
Author(s):  
Yu-Yia Wu ◽  
Jyr-Ching Hu ◽  
Geng-Pei Lin ◽  
Chung-Pai Chang ◽  
Hsin Tung ◽  
...  

Abstract Persistent scatterers SAR interferometry (PS-InSAR) was employed to monitor surface deformation in and around the Tainan tableland using 20 advanced synthetic aperture radar (ASAR) images from the ENVISAT satellite taken during the period from 2005 May 19 to 2008 September 25. In our study, we have found that the uplift rate of the northern Tainan tableland is faster than the southern tableland. The slant range displacement (SRD) rate for the area north along the precise leveling array is about 5 to 10 mm/yr with respect to the western edge of the Tainan tableland, whereas the SRD rate for the area south of the leveling array is about 1 to 5 mm/yr. In addition, the uplifted area extends eastward to the Tawan lowland with a maximum SRD rate of nearly 10 mm/yr, which is almost the same as the rate of the Tainan tableland. Results of this study differ from those suggested in previous researches that employed ERS-1/2 radar images taken from 1996 to 1999 and the differential interferometry synthetic aperture radar (D-InSAR) technique. Our findings indicated that the Tawan lowland no longer subsides with respect to the western edge of the Tainan tableland, and that both northern and southern areas are experiencing uplift.


2018 ◽  
Vol 55 ◽  
pp. 00006
Author(s):  
Karolina Grzesiak ◽  
Wojciech J. Milczarek

This paper presents an overview of the surface displacements retrieval capability of the Differential Synthetic Aperture Radar Interferometry algorithm, using Small Baseline Subset (SBAS) technique, in the context of active volcanic areas. Based on Sentinel-1A images, time series displacements fields of the Mauna Loa volcano area over a 2-year time interval (between 2015 and 2017) were received using batch processing. Based on 35 radar images, a total of 179 interferograms have been calculated. Methodology of Synthetic Aperture Radar (SAR) Sentinel-1 ESA satellite mission data processing with small base (SBAS) interferometric techniques from has been presented. The displacements calculated in the satellite’s Line of Sight (LOS) have been presented graphically on maps and graphs. Application of radar interferometry methods in the case of volcanic surface activity research creates new possibilities in the area of permanent monitoring of this type of areas.


Author(s):  
D. Infante ◽  
D. Di Martire ◽  
P. Confuorto ◽  
S. Tessitore ◽  
M. Ramondini ◽  
...  

<p><strong>Abstract.</strong> The Italian territory is strongly affected by ground instability phenomena and the occurrence of geological events, such as landslides and subsidence, is one of the main causes of damage to linear infrastructures, such as roads, bridges, railways and retaining walls, resulting in important socio-economic and human losses. To this aim, the frequent and accurate monitoring of surface displacements plays a key role in risk prevention and mitigation activities. In the last decade, a considerable interest towards innovative approaches has grown among the scientific community and land management institutions. In particular, Differential Interferometry Synthetic Aperture Radar (DInSAR) technique represents a useful tool to provide information on temporal and spatial evolution both of ground instability phenomena and of their interaction with man-made facilities, thanks to its accuracy, high spatial resolution, non-invasiveness and long-term temporal coverage, at reasonable costs. In this work, a GIS-semiautomatic approach, using Synthetic Aperture Radar data acquired by COSMO-SkyMed sensor, has been successfully applied to detect landslide-induced effects in terms of deformations of a linear infrastructure interested by slow-moving landslides in Campania Region (Italy).</p>


2021 ◽  
Vol 259 ◽  
pp. 112427
Author(s):  
Sugandh Chauhan ◽  
Roshanak Darvishzadeh ◽  
Sander H. van Delden ◽  
Mirco Boschetti ◽  
Andrew Nelson

2021 ◽  
Vol 13 (9) ◽  
pp. 1753
Author(s):  
Johnson Bailey ◽  
Armando Marino ◽  
Vahid Akbari

Icebergs represent hazards to ships and maritime activities and therefore their detection is essential. Synthetic Aperture Radar (SAR) satellites are very useful for this, due to their capability to acquire data under cloud cover and during day and night passes. In this work, we compared six state-of-the-art polarimetric target detectors to test their performance and ability to detect small-sized icebergs <120 m in four locations in Greenland. We used four single-look complex (SLC) ALOS-2 quad-polarimetric images from JAXA for quad-polarimetric detection and we compared with dual-polarimetric detectors using only the channels HH and HV. We also compared these detectors with single-polarimetric intensity channels and we tested using two scenarios: open ocean and sea ice. Our results show that the multi-look polarimetric whitening filter (MPWF) and the optimal polarimetric detector (OPD) provide the most optimal performance in quad- and dual-polarimetric mode detection. The analysis shows that, overall, quad-polarimetric detectors provide the best detection performance. When the false alarm rate (PF) is fixed to 10-5, the probabilities of detection (PD) are 0.99 in open ocean and 0.90 in sea ice. Dual-polarimetric or single-polarimetric detectors show an overall reduction in performance (the ROC curves show a decrease), but this degradation is not very large (<0.1) when the value of false alarms is relatively high (i.e., we are interested in bigger icebergs with a brighter backscattering >120 m, as they are easier to detect). However, the differences between quad- and dual- or single-polarimetric detectors became much more evident when the PF value was fixed to low detection probabilities 10-6 (i.e., smaller icebergs). In the single-polarimetric mode, the HV channel showed PD values of 0.62 for open ocean and 0.26 for sea ice, compared to values of 0.81 (open ocean) and 0.77 (sea ice) obtained with quad-polarimetric detectors.


2021 ◽  
Vol 13 (4) ◽  
pp. 785
Author(s):  
Sen Zhang ◽  
Qigang Jiang ◽  
Chao Shi ◽  
Xitong Xu ◽  
Yundi Gong ◽  
...  

Kuh-e-Namak (Dashti) namakier is one of the most active salt diapirs along the Zagros fold–thrust belt in Iran. Its surface deformation should be measured to estimate its long-term kinematics. Ten Sentinel-2 optical images acquired between October 2016 and December 2019 were processed by using Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) method. Forty-seven Sentinel-1 ascending Synthetic Aperture Radar (SAR) images acquired between April 2017 and December 2019 were processed by using Small Baseline Subset Synthetic Aperture Radar Interferometry (SBAS-InSAR) method. The deformation of Kuh-e-Namak (Dashti) namakier was measured using both methods. Then, meteorological data were utilized to explore the relationship between the kinematics of the namakier and weather conditions and differences in macrodeformation behavior of various rock salt types. The advantages and disadvantages of COSI-Corr and SBAS-InSAR methods in measuring the deformation of the namakier were compared. The results show that: (1) The flank subsides in the dry season and uplifts in the rainy season, whereas the dome subsides in the rainy season and uplifts in the dry season. Under extreme rainfall conditions, the namakier experiences permanent plastic deformation. (2) The “dirty” rock salt of the namakier is more prone to flow than the “clean” rock salt in terms of macrodeformation behavior. (3) In the exploration of the kinematics of the namakier via the two methods, COSI-Corr is superior to SBAS-InSAR on a spatial scale, but the latter is superior to the former on a time scale.


2021 ◽  
Vol 13 (4) ◽  
pp. 604
Author(s):  
Donato Amitrano ◽  
Gerardo Di Martino ◽  
Raffaella Guida ◽  
Pasquale Iervolino ◽  
Antonio Iodice ◽  
...  

Microwave remote sensing has widely demonstrated its potential in the continuous monitoring of our rapidly changing planet. This review provides an overview of state-of-the-art methodologies for multi-temporal synthetic aperture radar change detection and its applications to biosphere and hydrosphere monitoring, with special focus on topics like forestry, water resources management in semi-arid environments and floods. The analyzed literature is categorized on the base of the approach adopted and the data exploited and discussed in light of the downstream remote sensing market. The purpose is to highlight the main issues and limitations preventing the diffusion of synthetic aperture radar data in both industrial and multidisciplinary research contexts and the possible solutions for boosting their usage among end-users.


Sign in / Sign up

Export Citation Format

Share Document