scholarly journals Coastal Mean Dynamic Topography Recovery Based on Multivariate Objective Analysis by Combining Data from Synthetic Aperture Radar Altimeter

2022 ◽  
Vol 14 (1) ◽  
pp. 240
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Xiufeng He ◽  
Zhicai Luo ◽  
Haihong Wang

MDT recovery over coastal regions is challenging, as the mean sea surface (MSS) and geoid/quasi-geoid models are of low quality. The altimetry satellites equipped with the synthetic aperture radar (SAR) altimeters provide more accurate sea surface heights than traditional ones close to the coast. We investigate the role of using the SAR-based MSS in coastal MDT recovery, and the effects introduced by the SAR altimetry data are quantified and assessed. We model MDTs based on the multivariate objective analysis, where the MSS and the recently released satellite-only global geopotential model are combined. The numerical experiments over the coast of Japan and southeastern China show that the use of the SAR-based MSS improves the local MDT. The root mean square (RMS) of the misfits between MDT-modeled with SAR altimetry data and the ocean data is lower than that derived from MDT computed without SAR data—by a magnitude of 4–8 mm. Moreover, the geostrophic velocities derived from MDT modeled with the SAR altimetry data have better fits with buoy data than those derived from MDT modeled without SAR data. In total, our studies highlight the use of SAR altimetry data in coastal MDT recovery.

Wind Energy ◽  
2012 ◽  
Vol 16 (6) ◽  
pp. 865-878 ◽  
Author(s):  
Yuko Takeyama ◽  
Teruo Ohsawa ◽  
Katsutoshi Kozai ◽  
Charlotte Bay Hasager ◽  
Merete Badger

2020 ◽  
Vol 12 (23) ◽  
pp. 3970
Author(s):  
Antonio Sánchez-Román ◽  
Ananda Pascual ◽  
Marie-Isabelle Pujol ◽  
Guillaume Taburet ◽  
Marta Marcos ◽  
...  

The quality of the Data Unification and Altimeter Combination System (DUACS) Sentinel-3A altimeter data in the coastal area of the European seas is investigated through a comparison with in situ tide gauge measurements. The comparison was also conducted using altimetry data from Jason-3 for inter-comparison purposes. We found that Sentinel-3A improved the root mean square differences (RMSD) by 13% with respect to the Jason-3 mission. In addition, the variance in the differences between the two datasets was reduced by 25%. To explain the improved capture of Sea Level Anomaly by Sentinel-3A in the coastal band, the impact of the measurement noise on the synthetic aperture radar altimeter, the distance to the coast, and Long Wave Error correction applied on altimetry data were checked. The results confirmed that the synthetic aperture radar altimeter instrument onboard the Sentinel-3A mission better solves the signal in the coastal band. Moreover, the Long Wave Error processing contributes to reduce the errors in altimetry, enhancing the consistency between the altimeter and in situ datasets.


2014 ◽  
Vol 33 (11) ◽  
pp. 141-149 ◽  
Author(s):  
Lihua Wang ◽  
Yunxuan Zhou ◽  
Jianzhong Ge ◽  
Johnny A. Johannessen ◽  
Fang Shen

1992 ◽  
Vol 30 (5) ◽  
pp. 1085-1089 ◽  
Author(s):  
M. Petit ◽  
J.-M. Stretta ◽  
H. Farrugio ◽  
A. Wadsworth

2018 ◽  
Vol 10 (12) ◽  
pp. 1929 ◽  
Author(s):  
Xiao-Ming Li ◽  
Tianyu Zhang ◽  
Bingqing Huang ◽  
Tong Jia

Gaofen-3 (GF-3), the first Chinese spaceborne synthetic aperture radar (SAR) in C-band for civil applications, was launched on August 2016. Some studies have examined the use of GF-3 SAR data for ocean and coastal observations, but these studies generally focus on one particular application. As GF-3 has been in operation over two years, it is essential to evaluate its performance in ocean observation, a primary goal of the GF-3 launch. In this paper, we offer an overview demonstrating the capabilities of GF-3 SAR in ocean and coastal observations by presenting several representative cases, i.e., the monitoring of intertidal flats, offshore tidal turbulent wakes and oceanic internal waves, to highlight the GF-3’s full polarimetry, high spatial resolution and wide-swath imaging advantages. Moreover, we also present a detailed analysis of the use of GF-3 quad-polarization data for sea surface wind retrievals and wave mode data for sea surface wave retrievals. The case studies and statistical analysis suggest that GF-3 has good ocean and coastal monitoring capabilities, though further improvements are possible, particularly in radiometric calibration and stable image quality.


Sign in / Sign up

Export Citation Format

Share Document