scholarly journals The Mid-Diaphysis Is a Poor Predictor of Humeral Fracture Risk Indicating That Predisposing Factors Are Recent

Ruminants ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 23-30
Author(s):  
Michaela Gibson ◽  
Keren Dittmer ◽  
Rebecca Hickson ◽  
Penny Back ◽  
Alvaro Wehrle-Martinez ◽  
...  

The incidence of spontaneous humeral fractures in first-lactation dairy heifers in New Zealand has emphasised the need to understand the thoracic limb bone growth of dairy heifers. Previous research has indicated that a predisposing factor to spontaneous humeral fracture is nutrition. In addition, it has been hypothesised that liver copper concentration affects bone strength and may be a potential factor associated with humeral fracture risk. The aim of this study was to compare bone morphology in the mid-diaphysis of the metacarpus and humerus of heifers affected and unaffected by spontaneous humeral fractures, and determine the effect of copper status at death on bone morphology. The metacarpus and humerus were collected from heifers affected and unaffected by humeral fractures, and scanned using peripheral quantitative computed tomography (pQCT). The mid-diaphysis of the humerus of the affected group had reduced cortical bone mineral density and a trend for reduced cortical content and total bone content, which contributed to a reduced stress–strain index. The trend for reduced bone length in affected humeri provides additional support for the hypothesis of inhibited humeral growth. Heifers with low copper liver concentrations had reduced humerus lengths and reduced cortical bone mineral densities. These data support the hypothesis that the developmental window for humeral fracture is recent, and possibly associated with periods of inadequate nutrition.

2010 ◽  
Vol 95 (2) ◽  
pp. 699-706 ◽  
Author(s):  
Adrian Sayers ◽  
Jonathan H. Tobias

Abstract Context: It is unclear whether fat mass (FM) and lean mass (LM) differ in the way they influence cortical bone development in boys and girls. Objective: The aim of the study was to investigate the contributions of total body FM and LM to parameters related to cortical bone mass and geometry. Design/Setting: We conducted a longitudinal birth cohort study, the Avon Longitudinal Study of Parents and Children. Participants: A total of 4005 boys and girls (mean age, 15.5 yr) participated in the study. Outcome Measures: We measured cortical bone mass, cortical bone mineral content (BMCC), cortical bone mineral density, periosteal circumference (PC), and endosteal circumference by tibial peripheral quantitative computed tomography. Results: LM had a similar positive association with BMCC in boys and girls [regression coefficients with 95% confidence interval (CI); P for gender interactions: boys/girls, 0.952 (0.908, 0.997); P = 0.85]. However, the mechanisms by which LM influenced bone mass differed according to gender because LM was positively associated with PC more strongly in girls [boys, 0.579 (0.522, 0.635); girls, 0.799 (0.722, 0.875); P < 0.0001], but was only associated with cortical bone mineral density in boys [boys, 0.443 (0.382, 0.505); girls, 0.014 (−0.070, 0.097); P < 0.0001]. There was a stronger positive association between FM and BMCC in girls [boys, 0.227 (0.185, 0.269); girls, 0.355 (0.319, 0.392); P < 0.0001]. This reflected both a greater positive association of FM with PC in girls [boys, 0.213 (0.174, 0.253); girls, 0.312 (0.278, 0.347); P = 0.0002], and a stronger negative association with endosteal circumferencePC [boys, −0.059 (−0.096, 0.021); girls, −0.181 (−0.215, −0.146); P < 0.0001]. Conclusions: Whereas LM stimulates the accrual of cortical bone mass to a similar extent in boys and girls, FM is a stronger stimulus for accrual of cortical bone mass in girls, reflecting a greater tendency in females for FM to stimulate periosteal growth and suppress endosteal expansion.


2008 ◽  
Vol 88 (6) ◽  
pp. 766-779 ◽  
Author(s):  
Mary Kent Hastings ◽  
Judy Gelber ◽  
Paul K Commean ◽  
Fred Prior ◽  
David R Sinacore

Background and PurposeBone mineral density (BMD) decreases rapidly with prolonged non–weight bearing. Maximizing the BMD response to reloading activities after NWB is critical to minimizing fracture risk. Methods for measuring individual tarsal and metatarsal BMD have not been available. This case report describes tarsal and metatarsal BMD with a reloading program, as revealed by quantitative computed tomography (QCT).Case DescriptionA 24-year-old woman was non–weight bearing for 6 weeks after right talocrural arthroscopy. Tarsal and metatarsal BMD were measured with QCT 9 weeks (before reloading) and 32 weeks (after reloading) after surgery. A 26-week progressive reloading program was completed. Change scores were calculated for BMD before reloading and BMD after reloading for the total foot (average of all tarsals and metatarsals), tarsals, metatarsals, bones of the medial column (calcaneus, navicular, cuneiforms 1 and 2, and metatarsal 1), and bones of the lateral column (calcaneus, cuboid, cuneiform 3, and metatarsals 2–5). The percent differences in BMD between the involved side and the uninvolved side were calculated.OutcomesBefore reloading, BMD of the involved total foot was 9% lower than that on the uninvolved side. After reloading, BMD increased 22% and 21% for the total foot, 16% and 14% for the tarsals, 29% and 30% for the metatarsals, 14% and 15% for the medial column bones, and 28% and 26% for the lateral column bones on the involved and uninvolved sides, respectively. After reloading, BMD of the involved total foot remained 8% lower than that on the uninvolved side.DiscussionThe increase in BMD with reloading was not uniform across all pedal bones; the metatarsals showed a greater increase than the tarsals, and the lateral column bones showed a greater increase than the medial column bones.


2019 ◽  
Vol 34 (7) ◽  
pp. 1306-1313 ◽  
Author(s):  
John P Kemp ◽  
Adrian Sayers ◽  
William D Fraser ◽  
George Davey Smith ◽  
Mika Ala‐Korpela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document