scholarly journals A Fast Neighbor Discovery Algorithm in WSNs

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3319 ◽  
Author(s):  
Liangxiong Wei ◽  
Weijie Sun ◽  
Haixiang Chen ◽  
Ping Yuan ◽  
Feng Yin ◽  
...  

With the quick development of Internet of Things (IoT), one of its important supporting technologies, i.e., wireless sensor networks (WSNs), gets much more attention. Neighbor discovery is an indispensable procedure in WSNs. The existing deterministic neighbor discovery algorithms in WSNs ensure that successful discovery can be obtained within a given period of time, but the average discovery delay is long. It is difficult to meet the need for rapid discovery in mobile low duty cycle environments. In addition, with the rapid development of IoT, the node densities of many WSNs greatly increase. In such scenarios, existing neighbor discovery methods fail to satisfy the requirement in terms of discovery latency under the condition of the same energy consumption. This paper proposes a group-based fast neighbor discovery algorithm (GBFA) to address the issues. By carrying neighbor information in beacon packet, the node knows in advance some potential neighbors. It selects more energy efficient potential neighbors and proactively makes nodes wake up to verify whether these potential neighbors are true neighbors, thereby speeding up neighbor discovery, improving energy utilization efficiency and decreasing network communication load. The evaluation results indicate that, compared with other methods, GBFA decreases the average discovery latency up to 10 . 58 % at the same energy budget.

2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771905 ◽  
Author(s):  
Pengpeng Chen ◽  
Ying Chen ◽  
Shouwan Gao ◽  
Qiang Niu ◽  
Jun Gu

Due to the combination of constrained power, low duty cycle, and high mobility, neighbor discovery is one of the most challenging problems in wireless sensor networks. Existing discovery designs can be divided into two types: pairwise-based and group-based. The former schemes suffer from high discovery delay, while the latter ones accelerate the discovery process but incur too much energy overhead, far from practical. In this article, we propose a novel efficient group-based discovery method based on relative distance, which makes a delicate trade-off between discovery delay and energy consumption. Instead of directly referring to the wake-up schedules of a whole group of nodes, efficient group-based discovery selectively recommends nodes that are most likely to be neighbors, in which the probability is calculated based on the nodes’ relative distance. Moreover, the sequence of received signal strengths are employed to estimate the relative distance for avoiding the effect of the node distribution. Extensive simulations are conducted to verify the effectiveness of the design. The results indicate that efficient group-based discovery statistically achieves a good trade-off between energy cost and discovery latency. Efficient group-based discovery also shows one order of magnitude reduction in discovery delay with a maximum of 6.5% increase in energy consumption compared with typical discovery methods.


Authenticated energy consumption is the main criteria for constructing the Wireless Sensor Networks (WSNs). Every sensor has the dissimilar processing, communication range, memory unit. Each sensor node has restricted energy and memory. All the WSN based transmission architecture has the problem of authentication. The transmission overload and energy utilization have complex structure to perform the quality of service in WSN routing in a secure way. In spite of providing efficient communication for WSN, clustering approach is used to transmit the data packet from beginning node to the end node. Data gathering helps to organize the network and minimize the network overhead during data communication. Effective cluster head selection method is used for enhanced energy efficiency. Authenticated Energy Efficient Clustering Algorithm (AEEC) is proposed for efficient authenticated energy consumption-based routing methodology for WSN. The effective communication is performed by generating the authentication code within the sensor nodes to construct the innovative secured transmission based framework. The simulation results proved that the proposed method is implemented to reduce the energy consumption, routing overhead, end to end delay and increased amount of throughput compared to the other techniques.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Author(s):  
Amarasimha T. ◽  
V. Srinivasa Rao

Wireless sensor networks are used in machine learning for data communication and classification. Sensor nodes in network suffer from low battery power, so it is necessary to reduce energy consumption. One way of decreasing energy utilization is reducing the information transmitted by an advanced machine learning process called support vector machine. Further, nodes in WSN malfunction upon the occurrence of malicious activities. To overcome these issues, energy conserving and faulty node detection WSN is proposed. SVM optimizes data to be transmitted via one-hop transmission. It sends only the extreme points of data instead of transmitting whole information. This will reduce transmitting energy and accumulate excess energy for future purpose. Moreover, malfunction nodes are identified to overcome difficulties on data processing. Since each node transmits data to nearby nodes, the misbehaving nodes are detected based on transmission speed. The experimental results show that proposed algorithm provides better results in terms of reduced energy consumption and faulty node detection.


Author(s):  
Ajay Kaushik ◽  
S. Indu ◽  
Daya Gupta

Wireless sensor networks (WSNs) are becoming increasingly popular due to their applications in a wide variety of areas. Sensor nodes in a WSN are battery operated which outlines the need of some novel protocols that allows the limited sensor node battery to be used in an efficient way. The authors propose the use of nature-inspired algorithms to achieve energy efficient and long-lasting WSN. Multiple nature-inspired techniques like BBO, EBBO, and PSO are proposed in this chapter to minimize the energy consumption in a WSN. A large amount of data is generated from WSNs in the form of sensed information which encourage the use of big data tools in WSN domain. WSN and big data are closely connected since the large amount of data emerging from sensors can only be handled using big data tools. The authors describe how the big data can be framed as an optimization problem and the optimization problem can be effectively solved using nature-inspired algorithms.


Author(s):  
Vijendra Babu D. ◽  
K. Nagi Reddy ◽  
K. Butchi Raju ◽  
A. Ratna Raju

A modern wireless sensor and its development majorly depend on distributed condition maintenance protocol. The medium access and its computing have been handled by multi hope sensor mechanism. In this investigation, WSN networks maintenance is balanced through condition-based access (CBA) protocol. The CBA is most useful for real-time 4G and 5G communication to handle internet assistance devices. The following CBA mechanism is energy efficient to increase the battery lifetime. Due to sleep mode and backup mode mechanism, this protocol maintains its energy efficiency as well as network throughput. Finally, 76% of the energy consumption and 42.8% of the speed of operation have been attained using CBI WSN protocol.


Sign in / Sign up

Export Citation Format

Share Document