scholarly journals Hybrid System for Engagement Recognition During Cognitive Tasks Using a CFS + KNN Algorithm

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3691 ◽  
Author(s):  
Fadilla Zennifa ◽  
Sho Ageno ◽  
Shota Hatano ◽  
Keiji Iramina

Engagement is described as a state in which an individual involved in an activity can ignore other influences. The engagement level is important to obtaining good performance especially under study conditions. Numerous methods using electroencephalograph (EEG), electrocardiograph (ECG), and near-infrared spectroscopy (NIRS) for the recognition of engagement have been proposed. However, the results were either unsatisfactory or required many channels. In this study, we introduce the implementation of a low-density hybrid system for engagement recognition. We used a two-electrode wireless EEG, a wireless ECG, and two wireless channels NIRS to measure engagement recognition during cognitive tasks. We used electrooculograms (EOG) and eye tracking to record eye movements for data labeling. We calculated the recognition accuracy using the combination of correlation-based feature selection and k-nearest neighbor algorithm. Following that, we did a comparative study against a stand-alone system. The results show that the hybrid system had an acceptable accuracy for practical use (71.65 ± 0.16%). In comparison, the accuracy of a pure EEG system was (65.73 ± 0.17%), pure ECG (67.44 ± 0.19%), and pure NIRS (66.83 ± 0.17%). Overall, our results demonstrate that the proposed method can be used to improve performance in engagement recognition.

Author(s):  
Zhu Siyu ◽  
He Chongnan ◽  
Song Mingjuan ◽  
Li Linna

In response to the frequent counterfeiting of Wuchang rice in the market, an effective method to identify brand rice is proposed. Taking the near-infrared spectroscopy data of a total of 373 grains of rice from the four origins (Wuchang, Shangzhi, Yanshou, and Fangzheng) as the observations, kernel principal component analysis(KPCA) was employed to reduce the dimensionality, and Fisher discriminant analysis(FDA) and k-nearest neighbor algorithm (KNN) were used to identify brand rice respectively. The effects of the two recognition methods are very good, and that of KNN is relatively better. Howerver the shortcomings of KNN are obvious. For instance, it has only one test dimension and its test of samples is not delicate enough. In order to further improve the recognition accuracy, fuzzy k-nearest neighbor set is defined and fuzzy probability theory is employed to get a new recognition method –Two-Parameter KNN discrimination method. Compared with KNN algorithm, this method increases the examination dimension. It not only examines the proportion of the number of samples in each pattern class in the k-nearest neighbor set, but also examines the degree of similarity between the center of each pattern class and the sample to be identified. Therefore, the recognition process is more delicate and the recognition accuracy is higher. In the identification of brand rice, the discriminant accuracy of Two-Parameter KNN algorithm is significantly higher than that of FDA and that of KNN algorithm.


2015 ◽  
Vol 1 (4) ◽  
pp. 270
Author(s):  
Muhammad Syukri Mustafa ◽  
I. Wayan Simpen

Penelitian ini dimaksudkan untuk melakukan prediksi terhadap kemungkian mahasiswa baru dapat menyelesaikan studi tepat waktu dengan menggunakan analisis data mining untuk menggali tumpukan histori data dengan menggunakan algoritma K-Nearest Neighbor (KNN). Aplikasi yang dihasilkan pada penelitian ini akan menggunakan berbagai atribut yang klasifikasikan dalam suatu data mining antara lain nilai ujian nasional (UN), asal sekolah/ daerah, jenis kelamin, pekerjaan dan penghasilan orang tua, jumlah bersaudara, dan lain-lain sehingga dengan menerapkan analysis KNN dapat dilakukan suatu prediksi berdasarkan kedekatan histori data yang ada dengan data yang baru, apakah mahasiswa tersebut berpeluang untuk menyelesaikan studi tepat waktu atau tidak. Dari hasil pengujian dengan menerapkan algoritma KNN dan menggunakan data sampel alumni tahun wisuda 2004 s.d. 2010 untuk kasus lama dan data alumni tahun wisuda 2011 untuk kasus baru diperoleh tingkat akurasi sebesar 83,36%.This research is intended to predict the possibility of new students time to complete studies using data mining analysis to explore the history stack data using K-Nearest Neighbor algorithm (KNN). Applications generated in this study will use a variety of attributes in a data mining classified among other Ujian Nasional scores (UN), the origin of the school / area, gender, occupation and income of parents, number of siblings, and others that by applying the analysis KNN can do a prediction based on historical proximity of existing data with new data, whether the student is likely to complete the study on time or not. From the test results by applying the KNN algorithm and uses sample data alumnus graduation year 2004 s.d 2010 for the case of a long and alumni data graduation year 2011 for new cases obtained accuracy rate of 83.36%.


2018 ◽  
Author(s):  
I Wayan Agus Surya Darma

Balinese character recognition is a technique to recognize feature or pattern of Balinese character. Feature of Balinese character is generated through feature extraction process. This research using handwritten Balinese character. Feature extraction is a process to obtain the feature of character. In this research, feature extraction process generated semantic and direction feature of handwritten Balinese character. Recognition is using K-Nearest Neighbor algorithm to recognize 81 handwritten Balinese character. The feature of Balinese character images tester are compared with reference features. Result of the recognition system with K=3 and reference=10 is achieved a success rate of 97,53%.


2021 ◽  
Vol 11 (15) ◽  
pp. 7132
Author(s):  
Jianfeng Xi ◽  
Shiqing Wang ◽  
Tongqiang Ding ◽  
Jian Tian ◽  
Hui Shao ◽  
...  

Whether in developing or developed countries, traffic accidents caused by freight vehicles are responsible for more than 10% of deaths of all traffic accidents. Fatigue driving is one of the main causes of freight vehicle accidents. Existing fatigue driving studies mostly use vehicle operating data from experiments or simulation data, exposing certain drawbacks in the validity and reliability of the models used. This study collected a large quantity of real driving data to extract sample data under different fatigue degrees. The parameters of vehicle operating data were selected based on significant driver fatigue degrees. The k-nearest neighbor algorithm was used to establish the detection model of fatigue driving behaviors, taking into account influence of the number of training samples and other parameters in the accuracy of fatigue driving behavior detection. With the collected operating data of 50 freight vehicles in the past month, the fatigue driving behavior detection models based on the k-nearest neighbor algorithm and the commonly used BP neural network proposed in this paper were tested, respectively. The analysis results showed that the accuracy of both models are 75.9%, but the fatigue driving detection model based on the k-nearest neighbor algorithm is more reliable.


Sign in / Sign up

Export Citation Format

Share Document