scholarly journals Hybrid TSR–PSR Alternate Energy Harvesting Relay Network over Rician Fading Channels: Outage Probability and SER Analysis

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3839 ◽  
Author(s):  
Tan Nguyen ◽  
Phu Tran Tin ◽  
Duy Ha ◽  
Miroslav Voznak ◽  
Phuong Tran ◽  
...  

In this research, we investigate a hybrid time-switching relay (TSR)–power-splitting relay (PSR) alternate energy harvesting (EH) relaying network over the Rician fading channels. For this purpose, the amplify-and-forward (AF) mode is considered for the alternative hybrid time TSR–PSR. The system model consists of one source, one destination and two alternative relays for signal transmission from the source to the destination. In the first step, the exact and asymptotic expressions of the outage probability and the symbol errors ratio (SER) are derived. Then, the influence of all system parameters on the system performance is investigated, and the Monte Carlo simulation verifies all results. Finally, the system performances of TSR–PSR, TSR, and PSR cases are compared in connection with all system parameters.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tan N. Nguyen ◽  
Tran Hoang Quang Minh ◽  
Phuong T. Tran ◽  
Miroslav Voznak

We investigate the system performance of a two-way amplify-and-forward (AF) energy harvesting relay network over the Rician fading environment. For details, the delay-limited (DL) and delay-tolerant (DT) transmission modes are proposed and investigated when both energy and information are transferred between the source node and the destination node via a relay node. In the first stage, the analytical expressions of the achievable throughput, ergodic capacity, the outage probability, and symbol error ratio (SER) were proposed, analyzed, and demonstrated. After that, the closed-form expressions for the system performance are studied in connection with all system parameters. Moreover, the analytical results are also demonstrated by Monte Carlo simulation in comparison with the closed-form expressions. Finally, the research results show that the analytical and the simulation results agree well with each other in all system parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Junyi He ◽  
Junnan Zhang ◽  
Cheng Song ◽  
Mengxiang Wu

In this study, we consider a multiway massive multi-input multi-output (MIMO) relay network over Rician fading channels, where all users intend to share their information with the other users via amplify-and-forward (AF) relays equipped with a great number of antennas. More practical, the imperfect channel state information (CSI) is taken into account. To evaluate the performance of the considered networks, we derived an analytical approximation expression for the spectral efficiency with zero-forcing (ZF) receivers in a closed form. To obtain more insights, the asymptotic analysis as the number of relay antenna approaching infinity is carried out. Finally, the power scaling law is analyzed for two scenarios. The results reveal that (1) massive MIMO is capable of compensating the loss caused by Rician fading, (2) the sum spectral efficiency increases with the increase of the Rician factor, and (3) deploying large-scale antenna is effective to save cost and keep performance.


Author(s):  
Dinh-Thuan Do

In this paper, we consider one-way  relay with energy harvesting system based on power beacon (PB), in which the relay node harvests transmitted power from the PB station to forward signals to destination. We also analyse the relay network model with amplify-and-forward (AF) protocol for information cooperation and Power Splitting-based Relaying (PSR) protocol for power transfer. In particular, the outage probability and optimal energy harvesting (EH) power splitting fraction of novel scheme in are presented. We obtain analytical closed-form expression of  optimal energy harvesting (EH) power splitting fraction to minimize the outage probability of system. Using numerical and analytical simulations, the performances of different cases are presented and discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yifan Hu ◽  
Ning Cao ◽  
Yunfei Chen

Cooperative communication uses idle nodes to achieve performance gains. Energy harvesting allows cooperative communication to be less dependent on batteries. In this paper, the performance of energy harvesting (EH) amplify-and-forward relaying is analyzed for Rician fading channels, in contrast to previous works that focused on Rayleigh fading channels. Continuous time EH protocol and discrete time EH protocol are considered. Analytical expressions for the average throughput are derived. Numerical results are presented to show the good performance of the system in Rician fading channels by examining various system parameters using the analytical expressions.


Author(s):  
Van-Duc Phan ◽  
Phu Tran Tin ◽  
Minh Tran ◽  
Tran Thanh Trang

<p>In the last time, the system performance of the energy harvesting relay network has been considered in many studies. In this paper, we propose and investigate the outage probability (OP) of the Decode-and-Forward (DF) Energy Harvesting (EH) Full-Duplex (FD) Relaying network in Power Splitting Protocol (PS) using MRC Technique with the presence of the direct link. In the first stage, the integral form of the OP is derived in two cases with and without the presence of the direct link. After that, we analyze the influence of main system parameters on the OP and comparison between two cases with and without the presence of the direct link. Finally, the results show that all simulation and analytical results match well with each other based on the Monte Carlo verification simulation.</p>


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3946 ◽  
Author(s):  
Chunling Peng ◽  
Fangwei Li ◽  
Huaping Liu ◽  
Guozhong Wang

A joint resource allocation algorithm to minimize the system outage probability is proposed for a decode-and-forward (DF) two-way relay network with simultaneous wireless information and power transfer (SWIPT) under a total power constraint. In this network, the two sources nodes exchange information with the help of a passive relay, which is assumed to help the two source nodes’ communication without consuming its own energy by exploiting an energy-harvesting protocol, the power splitting (PS) protocol. An optimization framework to jointly optimize power allocation (PA) at the source nodes and PS at the relay is developed. Since the formulated joint optimization problem is non-convex, the solution is developed in two steps. First, the conditionally optimal PS ratio at the relay node for a given PA ratio is explored; then, the closed-form of the optimal PA in the sense of minimizing the system outage probability with instantaneous channel state information (CSI) is derived. Analysis shows that the optimal design depends on the channel condition and the rate threshold. Simulation results are obtained to validate the analytical results. Comparison with three existing schemes shows that the proposed optimized scheme has the minimum system outage probability.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tianci Wang ◽  
Guangyue Lu ◽  
Yinghui Ye ◽  
Yuan Ren

This paper investigates an energy-constrained two-way multiplicative amplify-and-forward (AF) relay network, where a practical nonlinear energy harvesting (NLEH) model is equipped at the relay to realize simultaneous wireless information and power transfer (SWIPT). We focus on the design of dynamic power splitting (DPS) strategy, in which the PS ratio is able to adjust itself according to the instantaneous channel state information (CSI). Specifically, we first formulate an optimization problem to maximize the outage throughput, subject to the NLEH. Since this formulated problem is nonconvex and difficult to solve, we further transfer it into an equivalent problem and develop a Dinkelbach iterative method to obtain the corresponding solution. Numerical results are given to verify the quick convergence of the proposed iterative method and show the superior outage throughput of the designed DPS strategy by comparing with two peer strategies designed for the linear energy harvesting (LEH) model.


Sign in / Sign up

Export Citation Format

Share Document