scholarly journals EGFET-Based Sensors for Bioanalytical Applications: A Review

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4042 ◽  
Author(s):  
Salvatore Pullano ◽  
Costantino Critello ◽  
Ifana Mahbub ◽  
Nishat Tasneem ◽  
Samira Shamsir ◽  
...  

Since the 1970s, a great deal of attention has been paid to the development of semiconductor-based biosensors because of the numerous advantages they offer, including high sensitivity, faster response time, miniaturization, and low-cost manufacturing for quick biospecific analysis with reusable features. Commercial biosensors have become highly desirable in the fields of medicine, food, and environmental monitoring as well as military applications, whereas increasing concerns about food safety and health issues have resulted in the introduction of novel legislative standards for these sensors. Numerous devices have been developed for monitoring biological processes such as nucleic acid hybridization, protein–protein interaction, antigen–antibody bonds, and substrate–enzyme reactions, just to name a few. Since the 1980s, scientific interest moved to the development of semiconductor-based devices, which also include integrated front-end electronics, such as the extended-gate field-effect transistor (EGFET) biosensor, one of the first miniaturized chemical sensors. This work is intended to be a review of the state of the art focused on the development of biosensors and chemosensors based on extended-gate field-effect transistor within the field of bioanalytical applications, which will highlight the most recent research reported in the literature. Moreover, a comparison among the diverse EGFET devices will be presented, giving particular attention to the materials and technologies.

2020 ◽  
Author(s):  
Hang Chen ◽  
Lijuan Deng ◽  
Hang Li ◽  
Longchang Huang ◽  
Xiaoping Zhu ◽  
...  

AbstractSilicon nanowire field effect transistor (SiNW-FET) biosensors are capable of label-free, real-time and biological detection with high sensitivity and specificity. However, direct observation on protein-protein interaction in blood or serum is still very difficult because of the complex physiological environment and Debye-screening effect. In order to overcome the detection obstacles, we used dialysis desalination method to purify the detection fluid and overcome Debye-screening effect. In our research, a top-down approach was proposed to fabricate the SiNW-FET, APTES-Glu chemical chain was used to link antibody to the SiNWs. And after verified the detection ability of silicon nanometer biosensors, the dynamic detection process of HbA1c was successfully realized. This could be helpful for accurate diagnosis of diabetes for clinical application. And it makes it possible to dynamic research of small biomolecules without markers.


2021 ◽  
Vol 54 (24) ◽  
pp. 245401
Author(s):  
Mingyang Ma ◽  
Lemeng Chao ◽  
Yuhang Zhao ◽  
Jiafeng Ding ◽  
Zhongchao Huang ◽  
...  

2018 ◽  
Vol 5 (8) ◽  
pp. 1990-1999 ◽  
Author(s):  
Xiaoyan Chen ◽  
Haihui Pu ◽  
Zipeng Fu ◽  
Xiaoyu Sui ◽  
Jingbo Chang ◽  
...  

A benzyltriethylammonium chloride-modified graphene field-effect transistor sensor has high sensitivity, high selectivity and rapid response for nitrate detection.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2280
Author(s):  
Hong Phan T. Nguyen ◽  
Thanihaichelvan Murugathas ◽  
Natalie O. V. Plank

Carbon nanotube field effect transistor (CNT FET) aptasensors have been investigated for the detection of adenosine using two different aptamer sequences, a 35-mer and a 27-mer. We found limits of detection for adenosine of 100 pM and 320 nM for the 35-mer and 27-mer aptamers, with dissociation constants of 1.2 nM and 160 nM, respectively. Upon analyte recognition the 35-mer adenosine aptamer adopts a compact G-quadruplex structure while the 27-mer adenosine aptamer changes to a folded duplex. Using the CNT FET aptasensor platform adenosine could be detected with high sensitivity over the range of 100 pM to 10 µM, highlighting the suitability of the CNT FET aptasensor platform for high performance adenosine detection. The aptamer restructuring format is critical for high sensitivity with the G-quadraplex aptasensor having a 130-fold smaller dissociation constant than the duplex forming aptasensor.


Sign in / Sign up

Export Citation Format

Share Document