scholarly journals Cooperative Jammer Selection for Secrecy Improvement in Cognitive Internet of Things

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4257 ◽  
Author(s):  
Ping Xie ◽  
Ling Xing ◽  
Honghai Wu ◽  
Jung Seo ◽  
Ilsun You

Smart homes can improve the quality of life and be implemented by Internet of Things (IoT) technologies. However, security is a very important issue in smart homes. For this reason, we propose a secrecy transmission protocol for primary user (PU) by selecting friendly jammer in cognitive IoT model. In particular, a secondary transmitter (ST) is selected to transmit secondary signals by the PU’s frequency spectrum, while another ST is chosen to transmit artificial noise to protect the transmission confidentiality of the PU against eavesdropping. Moreover, two selection schemes are presented to confirm the former and the latter ST, and the goal is to optimize the secondary transmission performance and the primary security performance, respectively. For the non-security model and the proposed protocol, we derive the closed-form expressions of the intercept probability and the outage probability for the PU. We also obtain the closed-form expression of outage probability for the secondary user. The numerical results show that the security performance of the PU is significantly enhanced in our protocol compared to the non-security model. In addition, the outage performance of the secondary users is also improved in high secondary transmit SNR region.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jinglan Ou ◽  
Hangchuan Shi ◽  
Liubin Wang ◽  
Rui Ma ◽  
Haowei Wu

Simultaneous wireless information and power transfer (SWIPT) is a major breakthrough in the field of low-power wireless information transmissions. In this paper, the secrecy performance of the SWIPT-enabled relay network with full-duplex destination-aided jamming is assessed, where both the power-splitting (PS) and time-switching (TS) schemes at the relay are considered with the linear and nonlinear energy harvesting models. The relay harvests energy from the confidential signal and artificial noise sent by the source and destination, respectively, and forwards the amplified signal to the destination, in the presence of an eavesdropper. The analytical closed-form expressions of the connection outage probability (COP), secrecy outage probability (SOP), and transmission outage probability (TOP) for PS- and TS-based schemes are derived, and the closed-form expression of the lower bound of ergodic secrecy capacity (ESC) is calculated. The asymptotic-form expressions of the COP, SOP, TOP, and ESC are further analyzed to capture the valuable information in the high SNR regime. Numerical results verify the correctness of analytical results, reveal the effects of the PS/TS ratio, and transmit the signal-to-noise ratio on secrecy performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Irfan Muhammad ◽  
Hirley Alves ◽  
Onel Alcaraz López ◽  
Matti Latva-aho

The Internet of Things (IoT) facilitates physical things to detect, interact, and execute activities on-demand, enabling a variety of applications such as smart homes and smart cities. However, it also creates many potential risks related to data security and privacy vulnerabilities on the physical layer of cloud-based Internet of Things (IoT) networks. These can include different types of physical attacks such as interference, eavesdropping, and jamming. As a result, quality-of-service (QoS) provisioning gets difficult for cloud-based IoT. This paper investigates the statistical QoS provisioning of a four-node cloud-based IoT network under security, reliability, and latency constraints by relying on the effective capacity model to offer enhanced QoS for IoT networks. Alice and Bob are legitimate nodes trying to communicate with secrecy in the considered scenario, while an eavesdropper Eve overhears their communication. Meanwhile, a friendly jammer, which emits artificial noise, is used to degrade the wiretap channel. By taking advantage of their multiple antennas, Alice implements transmit antenna selection, while Bob and Eve perform maximum-ratio combining. We further assume that Bob decodes the artificial noise perfectly and thus removes its contribution by implementing perfect successive interference cancellation. A closed-form expression for an alternative formulation of the outage probability, conditioned upon the successful transmission of a message, is obtained by considering adaptive rate allocation in an ON-OFF transmission. The data arriving at Alice’s buffer are modeled by considering four different Markov sources to describe different IoT traffic patterns. Then, the problem of secure throughput maximization is addressed through particle swarm optimization by considering the security, latency, and reliability constraints. Our results evidence the considerable improvements on the delay violation probability by increasing the number of antennas at Bob under strict buffer constraints.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6024
Author(s):  
Chunling Peng ◽  
Guozhong Wang ◽  
Fangwei Li ◽  
Huaping Liu

This paper considers simultaneous wireless information and power transfer (SWIPT) in a decode-and-forward two-way relay (DF-TWR) network, where a power splitting protocol is employed at the relay for energy harvesting. The goal is to jointly optimize power allocation (PA) at the source nodes, power splitting (PS) at the relay node, and time allocation (TA) of each duration to minimize the system outage probability. In particular, we propose a static joint resource allocation (JRA) scheme and a dynamic JRA scheme with statistical channel properties and instantaneous channel characteristics, respectively. With the derived closed-form expression of the outage probability, a successive alternating optimization algorithm is proposed to tackle the static JRA problem. For the dynamic JRA scheme, a suboptimal closed-form solution is derived based on a multistep optimization and relaxation method. We present a comprehensive set of simulation results to evaluate the proposed schemes and compare their performances with those of existing resource allocation schemes.


2020 ◽  
Author(s):  
Yebo Gu ◽  
Zhilu Wu ◽  
Zhendong Yin ◽  
Bowen Huang

Abstract The secure transmission problem of MIMO wireless system in fading channels is studied in this paper. We add a secrecy capacity optimization artificial noise(SCO-AN) to the transported signal for improving the security performance of the system. The closed-form expression of secrecy capacity's lower bound is obtained. Base on the closed-form expression of secrecy capacity's lower bound, We optimize the power allocation between the information-bearing signal and the SCO-AN. By calculating, the optimal ratio of power alloation betwenn the information-bearing signal and the SCO-AN is obtained. Through simulation, the results shows the secrecy capacity increases with more receiving antennas and less eavesdropping antennas.And more power should be allocated to the SCO-AN with the increase of the colluding eavedroppers.More over, we study the effect of channel estimation error on power allocation between information-bearing signal and SCO-AN and find that more power should be allocated to decrease eavesdroppers capacity if the channel estimation is not perfect.


Sign in / Sign up

Export Citation Format

Share Document