scholarly journals Towards Goal-Directed Navigation Through Combining Learning Based Global and Local Planners

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 176 ◽  
Author(s):  
Xiaomao Zhou ◽  
Yanbin Gao ◽  
Lianwu Guan

Robot navigation is a fundamental problem in robotics and various approaches have been developed to cope with this problem. Despite the great success of previous approaches, learning-based methods are receiving growing interest in the research community. They have shown great efficiency in solving navigation tasks and offer considerable promise to build intelligent navigation systems. This paper presents a goal-directed robot navigation system that integrates global planning based on goal-directed end-to-end learning and local planning based on reinforcement learning (RL). The proposed system aims to navigate the robot to desired goal positions while also being adaptive to changes in the environment. The global planner is trained to imitate an expert’s navigation between different positions by goal-directed end-to-end learning, where both the goal representations and local observations are incorporated to generate actions. However, it is trained in a supervised fashion and is weak in dealing with changes in the environment. To solve this problem, a local planner based on deep reinforcement learning (DRL) is designed. The local planner is first implemented in a simulator and then transferred to the real world. It works complementarily to deal with situations that have not been met during training the global planner and is able to generalize over different situations. The experimental results on a robot platform demonstrate the effectiveness of the proposed navigation system.

Robotica ◽  
2020 ◽  
Vol 38 (12) ◽  
pp. 2266-2289
Author(s):  
Vaibhav Malviya ◽  
Arun Kumar Reddy ◽  
Rahul Kala

SUMMARYWe present a robot navigation system based on Behavioral Finite State Social Machine. The paper makes a robot operate as a social tour guide that adapts its navigation based on the behavior of the visitors. The problem of a robot leading a human group with a limited field-of-view vision is relatively untouched in the literature. Uncertainties arise when the visitors are not visible, wherein the behavior of the robot is adapted as a social response. Artificial potential field is used for local planning, and a velocity manager sets the speed disproportional to time duration of missing visitors.


2010 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Richard Schilling ◽  

Atrial fibrillation (AF) is linked to an increased risk of adverse cardiovascular events. While rhythm control with antiarrhythmic drugs (AADs) is a common strategy for managing patients with AF, catheter ablation may be a more efficacious and safer alternative to AADs for sinus rhythm control. Conventional catheter ablation has been associated with challenges during the arrhythmia mapping and ablation stages; however, the introduction of two remote catheter navigation systems (a robotic and a magnetic navigation system) may potentially overcome these challenges. Initial clinical experience with the robotic navigation system suggests that it offers similar procedural times, efficacy and safety to conventional manual ablation. Furthermore, it has been associated with reduced fluoroscopy exposure to the patient and the operator as well as a shorter fluoroscopy time compared with conventional catheter ablation. In the future, the remote navigation systems may become routinely used for complex catheter ablation procedures.


Author(s):  
Nathan Hunt ◽  
Nathan Fulton ◽  
Sara Magliacane ◽  
Trong Nghia Hoang ◽  
Subhro Das ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document