scholarly journals Characterization and Design Improvement of a Thickness-Shear Lead Zirconate Titanate Transducer for Low Frequency Ultrasonic Guided Wave Applications

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1848 ◽  
Author(s):  
Marco Zennaro ◽  
Dan J. O’Boy ◽  
Premesh Shehan Lowe ◽  
Tat-Hean Gan

Thickness-shear transducers for guided wave testing have been used in industry for over two decades and much research has been conducted to improve the resolution and sensitivity. Due to a geometric feature of the current state-of-the art transducer, there is an out-of-plane component in the propagation direction of the fundamental shear horizontal mode which complicates the signal interpretation. In such case, complex signal processing techniques need to be used for mode discrimination to assess the structural health with higher precision. Therefore, it is important to revise the transducer design to eliminate the out-of-plane components in the propagation direction of fundamental shear horizontal mode. This will enhance the mode purity of fundamental shear horizontal mode for its application in guided wave inspection. A numerical investigation has been conducted on a 3 mm thick 2 m circular steel plate to understand the behaviour and the characteristics of the state-of-the-art thickness-shear transducer. Based on the results, it is noted that the redesigning the electrode arrangement will suppress the out-of-plane components on the propagation direction of the fundamental shear horizontal mode. With the aid of this information current state-of-the-art transducers were redesigned and tested in laboratory conditions using the 3D Laser Doppler Vibrometer. This information will aid future transducer designers improve the resolution of thickness-shear transducers for guided wave applications and reduce the weight and cost of transducer array by eliminating the need of additional transducers to suppress spurious modes.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1995-2003 ◽  
Author(s):  
Bouko Vogelaar ◽  
Giel Priems ◽  
Kees Bourgonje ◽  
Michael Golombok

In-service degradation of a pipe section is monitored in real time with torsional guided waves which can resolve 5% damage to the internal wall. We use a single permanently installed source–receiver pair as opposed to the current state-of-the-art sensor rings. There is no baseline subtraction requirement as a single reflection coefficient is derived by internal referencing of the time trace. Even with continuously operating pump vibration, there is enough acoustic signal for confident damage localization. Since pipelines wear out gradually in industrial installations, the acoustic footprint is similar to that previously determined in periodically damaged pipes. The reflective method can thus be applied successfully to monitor structural health in industrial pipelines during operation as opposed to the current state-of-the-art guided wave inspection approaches using near-weld reflection techniques along with disassembled and re-assembled sensor rings.



2004 ◽  
Vol 57 (3) ◽  
pp. 191-221 ◽  
Author(s):  
Vishal Singhal, ◽  
Suresh V Garimella, ◽  
Arvind Raman

A review of the state of the art in micropumping technologies for driving fluid through microchannels is presented with a particular emphasis on small-scale cooling applications. An extensive variety of micropumping techniques developed over the past fifteen years in the literature is reviewed. The physical principles, engineering limitations, and advantages of approximately twenty different kinds of micropumps are reviewed. The available micropumping techniques are compared quantitatively, primarily in terms of the maximum achievable flow rate per unit cross-sectional area of the microchannel and the maximum achievable back pressure. A concise table is developed to facilitate the convenient comparison of the micropumps based on different criteria including their miniaturization potential, size (in-plane and out-of-plane), actuation voltage and power required per unit flow rate, ease and cost of fabrication, minimum and maximum frequency of operation, and suitability for electronics cooling. Some important performance characteristics of the micropumps, which are likely to be decisive for specific applications, are also discussed. The current state of the art in micropump design and fabrication is also comprehensively reviewed. There are 171 references cited in this review article.



2021 ◽  
Vol 11 (11) ◽  
pp. 4904
Author(s):  
Devan Atkinson ◽  
Thorsten Hermann Becker

Digital Image Correlation (DIC) has found widespread use in measuring full-field displacements and deformations experienced by a body from images captured of it. Stereo-DIC has received significantly more attention than two-dimensional (2D) DIC since it can account for out-of-plane displacements. Although many aspects of Stereo-DIC that are shared in common with 2D DIC are well documented, there is a lack of resources that cover the theory of Stereo-DIC. Furthermore, publications which do detail aspects of the theory do not detail its implementation in practice. This literature gap makes it difficult for newcomers to the field of DIC to gain a deep understanding of the Stereo-DIC process, although this knowledge is necessary to contribute to the development of the field by either furthering its capabilities or adapting it for novel applications. This gap in literature acts as a barrier thereby limiting the development rate of Stereo-DIC. This paper attempts to address this by presenting the theory of a subset-based Stereo-DIC framework that is predominantly consistent with the current state-of-the-art. The framework is implemented in practice as a 202 line MATLAB code. Validation of the framework shows that it performs on par with well-established Stereo-DIC algorithms, indicating it is sufficiently reliable for practical use. Although the framework is designed to serve as an educational resource, its modularity and validation make it attractive as a means to further the capabilities of DIC.



Author(s):  
Graham R. Edwards ◽  
Tat-Hean Gan

Guided wave ultrasonics is now an established technology for detecting corrosion in pipes. The technique is principally applied to pipe that is insulated, buried or otherwise inaccessible to conventional NDT. TWI has experience in applying the technique to offshore risers, where there are specific problems. Access beneath the cut-off valves of the platform is restricted and the clamps used to hold the riser and the coatings used to protect it in the splash zone can affect test performance. This paper will describe these problems in detail and discuss ways of overcoming them. Case studies will be used to illustrate the current state-of-the-art and TWI’s research and development programme in long range ultrasonics for inspecting a wide range of components from pipes to railway lines will highlight future developments.



1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).



1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND


10.37236/24 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
A. Di Bucchianico ◽  
D. Loeb

We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of “magic rules” for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly.





2009 ◽  
Vol 5 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Osvaldo Santos-Filho ◽  
Anton Hopfinger ◽  
Artem Cherkasov ◽  
Ricardo de Alencastro


Author(s):  
Shi Yan ◽  
Binbin He ◽  
Naizhi Zhao

Pipeline structure may generate damages during its service life due to the influence of environment or accidental loading. The damages need to be detected and repaired if they are severe enough to influence the transportation work. Non-destructive detection using smart materials combined with suitable diagonal algorithms are widely used in the field of structural health monitoring (SHM). Piezoelectric ceramics (such as Lead Zirconate Titanate, PZT) is one of the smart materials to be applied in the SHM due to the piezoelectric effect. So far, the PZT-based wave method is widely used for damage detection of structures, in particular, pipeline structures. A series of piezoelectric patches are bonded on the surface of the pipeline structure to monitor the damages such as local crack or effective area reduction due to corrosion by using diagonal waves. The damage of the pipeline structure can be detected by analysis of the received diagonal waves which peak value, phase, and arriving time can be deferent from the health ones. The response of the diagonal wave is not only correlated to the damage location through estimation of the arrival time of the wave peak, but also associated with the peak value of the wave for the reduction of wave energy as the guided wave passing through the damages. Therefore, the presence of damages in the pipeline structure can be detected by investigating the parameter change of the guided waves. The change of the wave parameters represents the attenuation, deflection and mode conversion of the waves due to the damages. In addition, the guided wave has the ability of quick detecting the damage of the pipeline structure and the simplicity of generating and receiving detection waves by using PZT patches. To verify the proposed method, an experiment is designed and tested by using a steel pipe bonded the PZT patches on the surface of it. The PZT patches consist of an array to estimate the location and level of the damage which is simulated by an artificial notch on the surface of the structure. The several locations and deep heights of the notches are considered during the test. A pair of the PZT patches are used at the same time as one is used as an actuator and the other as a sensor, respectively. A tone burst of 5 cycles of wave shape is used during the experiment. A wave generator is applied to create the proposed waves, and the waves are amplified by an amplifier to actuate the PZT patch to emit the diagonal waves with appropriately enough energy. Meanwhile, the other PZT patch is used as a sensor to receive the diagonal signals which contain the information of the damages for processing. For data processing, an index of root mean square deviation (RMSD) of the received data is used to estimate the damage level by compare of the data between the damaged and the health peak valves of the received signals. The time reversal method which aimed at increasing the efficiency of the detection is also used to detect the damage location by estimating the arrival time of the reflected wave passing with a certain velocity. The proposed method experimentally validates that it is effective for application in damage detection of pipeline structure.



Sign in / Sign up

Export Citation Format

Share Document